Closed rpruim closed 6 years ago
done.
library(mosaicModel) #> Loading required package: mosaicCore #> Loading required package: splines #> Loading required package: magrittr mod1 <- lm(wage ~ age * sex + sector, data = mosaicData::CPS85) mod_eval(mod1, interval = "prediction") # 95% confidence level #> age sex sector model_output lower upper #> 1 0 M prof 8.914945 -0.1165512 17.94644 #> 2 100 M prof 20.019749 10.6733678 29.36613 #> 3 0 F prof 9.172299 0.1237554 18.22084 #> 4 100 F prof 13.727640 4.3772696 23.07801 #> 5 0 M clerical 5.096372 -3.9437249 14.13647 #> 6 100 M clerical 16.201176 6.8203084 25.58204 #> 7 0 F clerical 5.353726 -3.6909856 14.39844 #> 8 100 F clerical 9.909067 0.5653999 19.25273 mod_eval(mod1, interval = "prediction", level = 0.9) #> age sex sector model_output lower upper #> 1 0 M prof 8.914945 1.339596 16.49029 #> 2 100 M prof 20.019749 12.180284 27.85921 #> 3 0 F prof 9.172299 1.582652 16.76195 #> 4 100 F prof 13.727640 5.884829 21.57045 #> 5 0 M clerical 5.096372 -2.486191 12.67893 #> 6 100 M clerical 16.201176 8.332785 24.06957 #> 7 0 F clerical 5.353726 -2.232707 12.94016 #> 8 100 F clerical 9.909067 2.071879 17.74626 mod2 <- glm(married == "Married" ~ age + sex * sector, data = mosaicData::CPS85, family = "binomial") mod_eval(mod2, nlevels = 2, sex = "F") #> Warning in predict.lm(object, newdata, se.fit, scale = 1, type = #> ifelse(type == : prediction from a rank-deficient fit may be misleading #> age sex sector model_output #> 1 0 F prof 0.1608223 #> 2 100 F prof 0.9847174 #> 3 0 F clerical 0.1896298 #> 4 100 F clerical 0.9874492 mod_eval(mod2, nlevels = 2, sex = "F", interval = "confidence", level = 0.9) #> Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type #> = ifelse(type == : prediction from a rank-deficient fit may be misleading #> age sex sector model_output lower upper #> 1 0 F prof 0.1608223 0.08390278 0.2862267 #> 2 100 F prof 0.9847174 0.95472247 0.9949468 #> 3 0 F clerical 0.1896298 0.10552564 0.3170088 #> 4 100 F clerical 0.9874492 0.96322332 0.9957866
Created on 2018-06-21 by the reprex package (v0.2.0).
Is there any way to elide the:
"ifelse(type == : prediction from a rank-deficient fit may be misleading"
message in there? I think that I know what it is there (but it's offputting).
done.
Created on 2018-06-21 by the reprex package (v0.2.0).