PyewDegul / fdm_counter_heat_ex

0 stars 0 forks source link

2D-FDM of heat exchanger #1

Open PyewDegul opened 5 months ago

PyewDegul commented 5 months ago

Hello, I am an undergraduate student majoring in Mechanical Engineering.

I am currently attempting to compare the e-NTU method and the Energy Balance Equation for a 2D-Laminar counter flow heat exchanger. Although the results from the FDM (Finite Difference Method) are converging, they significantly differ from the values presented in the paper (Table 2), showing about 0.1 lower values.

Could anyone experienced in this field help me with this issue? Thank you.

5 2d_lam_heat.pdf

import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime

# Set up matrix
for m_0, k in [(1,1), (1,2), (1,4), (2,0.5), (2,1), (2,2)]:

    y1, y2, xi_L = 1, 1, 1
    del_y1, del_y2, del_z = 10**(-1.5), 10**(-1.5), 10**(-4)  # More fine-grained mesh
    m, n1, n2 = int((xi_L/del_z)+1), int((y1/del_y1)+1), int((y2/del_y2)+1)

    # Use GPU if available
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # theta_n1, theta_n2, theta_w initialization with boundary conditions
    theta_n1 =  torch.zeros((m, n1), device=device)
    theta_n2 = torch.zeros((m, n2), device=device)
    theta_w = torch.zeros((m, 1), device=device)
    theta_n1[0, :] = 0  # Inlet n1
    theta_n2[m-1, :] = 1  # Inlet n2
    theta_w[0] = 0  # Wall at zeta = 0
    theta_w[m-1] = 1  # Wall at zeta = 1
    theta_n1[m-1, n1-1] = 1  # Outlet n1
    theta_n2[0, n2-1] = 0  # Outlet n2

    # Tolerance
    errormax = 1e-5
    error = 1
    errors = []
    iteration = 0

    def update(theta_n1, theta_n2, theta_w):

        # Update boundary conditions
        theta_w[1:-1, 0] = (k/(1+k)) * theta_n2[1:-1, n2-2] + (1/(1+k)) * theta_n1[1:-1, n1-2]
        theta_n1[:, n1-1] = theta_w[:, 0]
        theta_n2[:, n2-1] = theta_w[:, 0]
        theta_n1[:, 0] = theta_n1[:, 1]
        theta_n2[:, 0] = theta_n2[:, 1]

        # Update inner points
        a1 = del_y1 * del_y1
        b1 = 0.75 * (1 - (torch.arange(1, n1-1, device=device) * del_y1) ** 2)
        c1 = del_z

        a2 = del_y2 * del_y2
        b2 = -0.75 * m_0 * (1 - (torch.arange(1, n2-1, device=device) * del_y2) ** 2)
        c2 = del_z

        # Update theta_n1
        theta_n1[1:m, 1:n1-1] = (c1 / (2 * a1 * b1)) * (theta_n1[:m-1, 2:n1] + theta_n1[:m-1, :n1-2]) + \
                                (1 - (c1 / (a1 * b1))) * theta_n1[:m-1, 1:n1-1]
        # Update theta_n2
        theta_n2[:m-1, 1:n2-1] = -(c2 / (2 * a2 * b2)) * (theta_n2[1:m, 2:n2] + theta_n2[1:m, :n2-2]) + \
                                (1 + (c2 / (a2 * b2))) * theta_n2[1:m, 1:n2-1]

        theta_w[1:-1, 0] = (k/(1+k)) * theta_n2[1:-1, n2-2] + (1/(1+k)) * theta_n1[1:-1, n1-2]
        theta_n1[:, n1-1] = theta_w[:, 0]
        theta_n2[:, n2-1] = theta_w[:, 0]
        theta_n1[:, 0] = theta_n1[:, 1]
        theta_n2[:, 0] = theta_n2[:, 1]

        return theta_n1, theta_n2, theta_w

    tic = datetime.now()

    while error > errormax:
        theta_n1_old = theta_n1.clone()
        theta_n2_old = theta_n2.clone()
        theta_w_old = theta_w.clone()

        theta_n1, theta_n2, theta_w = update(theta_n1, theta_n2, theta_w)

        error1 = torch.max(torch.abs(theta_n1 - theta_n1_old))  
        error2 = torch.max(torch.abs(theta_n2 - theta_n2_old))
        error = torch.max(error1, error2)
        errors.append(error.item())
        iteration += 1
        if iteration % 2500 == 0:
            toc = datetime.now()
            print(f"Iteration: {iteration}, Error: {error}, consumed_time: {toc - tic}")    

    # Save the results to CSV
    xi = torch.linspace(0, xi_L, m).cpu().numpy()
    y1_values = torch.linspace(0, y1, n1).cpu().numpy()
    y2_values = torch.linspace(0, y2, n2).cpu().numpy()

    T_n1 = theta_n1.cpu().numpy()
    T_n2 = theta_n2.cpu().numpy()

    # np.mean(T_n1[-1]) should be same with effectivness
    print(f'mean(m,k): ({m_0}, {k}) : {np.mean(T_n1[-1])}')
PyewDegul commented 5 months ago

6 The figure above shows the results I obtained. There is about a 0.1 discrepancy.