Closed VolodymyrAhafonov closed 3 years ago
You can create three folders merged, trimap, and alpha, then put images in folders merged and trimap. LFPNet works better on high-resolution images.
@Windaway thank you for your reply. I've done it. But I've got bad results. So that's why I've requested test data from you.
Thank you for your feedback. The code runs normally on my computer and training server. Below are the test images (no ground truth) and our results. I think the code may depend on a specific version of the python library. You may build a new environment according to my configuration.
absl-py==0.9.0 addict==2.4.0 apturl==0.5.2 asn1crypto==0.24.0 astor==0.8.0 attrs==19.3.0 backcall==0.1.0 beautifulsoup4==4.6.0 bleach==3.1.0 Brlapi==0.6.6 certifi==2018.1.18 chardet==3.0.4 chumpy==0.69 Click==7.0 codecov==2.1.11 colorama==0.4.4 command-not-found==0.3 ConfigArgParse==0.15.1 configer==1.4.1 configparser==4.0.2 coverage==5.5 cryptography==2.1.4 cupshelpers==1.0 cycler==0.10.0 Cython==0.29.14 decorator==4.4.1 defer==1.0.6 defusedxml==0.6.0 distro-info===0.18ubuntu0.18.04.1 entrypoints==0.3 flake8==3.8.4 freetype-py==2.1.0.post1 future==0.18.2 gast==0.3.2 grpcio==1.25.0 h5py==2.7.1 homogenus===.5 html5lib==0.999999999 httplib2==0.9.2 human-body-prior==0.9.3.0 idna==2.6 imageio==2.6.1 imageio-ffmpeg==0.3.0 imgaug==0.4.0 importlib-metadata==0.23 iniconfig==1.1.1 interrogate==1.3.2 ipykernel==5.1.3 ipython==7.9.0 ipython-genutils==0.2.0 ipywidgets==7.5.1 isort==4.3.21 jedi==0.15.1 Jinja2==2.10.3 jsonpatch==1.25 jsonpointer==2.0 jsonschema==3.1.1 jupyter-client==5.3.4 jupyter-core==4.6.1 Keras-Applications==1.0.8 Keras-Preprocessing==1.1.0 keyring==10.6.0 keyrings.alt==3.0 kiwisolver==1.1.0 kornia==0.4.0 language-selector==0.1 launchpadlib==1.10.6 lazr.restfulclient==0.13.5 lazr.uri==1.0.3 leveldb==0.1 llvmlite==0.32.1 lmdb==1.1.1 louis==3.5.0 lxml==4.2.1 macaroonbakery==1.1.3 Mako==1.0.7 Markdown==3.1.1 MarkupSafe==1.1.1 matplotlib==3.1.2 mccabe==0.6.1 mesh-intersection==0.1.0 mistune==0.8.4 mmcv-full==1.2.6 -e git+https://gitee.com/mirrors/mmdetection.git@247785ceb31cabb0e3fd4c6ce17108d04f478ab8#egg=mmdet -e git+https://github.com/open-mmlab/mmediting.git@4c2345f6daa57ecb87f5fdb3c8e0ffa60993d83c#egg=mmedit mmpycocotools==12.0.3 mock==3.0.5 more-itertools==7.2.0 moviepy==1.0.1 nbconvert==5.6.1 nbformat==4.4.0 netifaces==0.10.4 networkx==2.4 nose==1.3.7 notebook==6.0.2 numba==0.49.1 numexpr==2.6.4 numpy==1.17.4 oauth==1.0.1 olefile==0.45.1 open3d-python==0.7.0.0 opencv-python==4.2.0.34 opendr==0.78 packaging==20.9 pandas==0.22.0 pandocfilters==1.4.2 parso==0.5.1 pexpect==4.7.0 pickleshare==0.7.5 Pillow==6.2.2 pluggy==0.13.1 proglog==0.1.9 prometheus-client==0.7.1 prompt-toolkit==2.0.10 protobuf==3.11.2 ptyprocess==0.6.0 py==1.10.0 pycairo==1.16.2 pycocotools==2.0.0 pycodestyle==2.6.0 pycrypto==2.6.1 pycups==1.9.73 pyflakes==2.2.0 pyglet==1.4.0b1 Pygments==2.4.2 pygobject==3.26.1 pymacaroons==0.13.0 PyMatting==1.0.6 PyNaCl==1.1.2 PyOpenGL==3.1.0 pyparsing==2.4.6 pyrender==0.1.32 pyRFC3339==1.0 pyrsistent==0.15.5 pytest==6.2.2 pytest-runner==5.3.0 python-apt==1.6.5+ubuntu0.5 python-dateutil==2.8.1 python-debian==0.1.32 python-gflags==1.5.1 pythotk==0.2 pytz==2018.3 PyWavelets==1.1.1 pyxdg==0.25 PyYAML==5.1 pyzmq==18.1.0 reportlab==3.4.0 requests==2.18.4 requests-unixsocket==0.1.5 scikit-image==0.16.2 scikit-learn==0.20.3 scipy==1.3.2 screen-resolution-extra==0.0.0 SecretStorage==2.3.1 Send2Trash==1.5.0 Shapely==1.6.4.post2 simplegeneric==0.8.1 simplejson==3.13.2 six==1.13.0 smplx==0.1.13 system-service==0.3 systemd-python==234 tables==3.4.2 tabulate==0.8.9 tensorboard==1.13.1 tensorboardX==2.0 tensorflow==1.13.1 tensorflow-estimator==1.13.0 termcolor==1.1.0 terminado==0.8.3 terminaltables==3.1.0 testpath==0.4.4 toml==0.10.2 torch==1.6.0 torchfile==0.1.0 torchgeometry==0.1.2 torchnet==0.0.5.1 torchsummary==1.5.1 torchvision==0.7.0 tornado==6.0.3 tqdm==4.38.0 traitlets==4.3.3 transforms3d==0.3.1 trimesh==3.4.1 ubuntu-drivers-common==0.0.0 ufw==0.36 unattended-upgrades==0.1 urllib3==1.22 usb-creator==0.3.3 visdom==0.1.8.9 wadllib==1.3.2 wcwidth==0.1.7 webencodings==0.5.1 websocket-client==0.57.0 Werkzeug==0.16.0 widgetsnbextension==3.5.1 xkit==0.0.0 yacs==0.1.7 yapf==0.30.0 youtube-dl==2019.11.5 zipp==0.6.0 zope.interface==4.3.2
Here is the result of FBAMatting.
@Windaway thank you very much for provided images! I've reproduced same results with provided images. And also found root cause of issue with my data.
We can close issue now.
@VolodymyrAhafonov What was the problem that you faced with your data?
@hackkhai Unknown (grey) area was equal to 127 in my trimap. Eval script expect that unknown area is equal to 128.
Hello, very interesting paper and promising results! Could you please provide test data for
eval.py.
I want to try out your matting network.Kind regards, Vladimir.