Qinying-Liu / CASE

Accepted by ICCV2023, Revisiting Foreground and Background Separation in Weakly-supervised Temporal Action Localization: A Clustering-based Approach
104 stars 3 forks source link

关于ActivityNet v1.2和ActivityNet v1.3数据集训练的细节问题 #5

Open mymuli opened 6 months ago

mymuli commented 6 months ago

您好! 我注意到你们组先后发表了一下几篇论文: AFPS:《Weakly supervised temporal action localization with actionness-guided false positive suppression》 CASE: 《Revisiting Foreground and Background Separation in Weakly-supervised Temporal Action Localization: A Clustering-based Approach》 AICL:《Actionness Inconsistency-Guided Contrastive Learning for Weakly-Supervised Temporal Action Localization》 其中,CASE模型和AICL分别在THUMOS14数据集上的AVG mAP(0.1:0.7)指标上的性能为46.2和46.4,但在ActivityNet v1.2数据集上可以分别达到27.9和29.9,远高于其他方法。

请问一下是否可以提供ActivityNet v1.2数据集的特征,训练参数和对应的细节呢?谢谢