Closed e7mul closed 3 years ago
Hey thanks for raising this issue. In experiments/GG/splitcifar100/configs/rn18-supsup.yaml
, can you change the bn_type
from NonAffineBN
to MultitaskNonAffineBN
, and then let us know if that fixes this issue for you with the same command?
Yes, it solved the problem, thanks!
Thanks for the great effort to provide code for your paper!
I run into issue trying to reproduce your results on GG experiments for SplitCIFAR-100.
After cloning the repo and runing following command:
python experiments/GG/splitcifar100/rn18-supsup.py --gpu-sets="0|1|2|3" --data=/path/to/dataset/parent --seeds 1
the _adaptresults.csv file looks like this: (the accuracy for adapt which in this config is 'gt' are completely random but for last task)
12-09-20_19:12:19, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_0~numtaskslearned=20~tasknumber=0, RandSplitCIFAR100_0, 20, 0.8480, 0.2000 12-09-20_19:12:19, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_1~numtaskslearned=20~tasknumber=1, RandSplitCIFAR100_1, 20, 0.8280, 0.2000 12-09-20_19:12:19, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_2~numtaskslearned=20~tasknumber=2, RandSplitCIFAR100_2, 20, 0.9180, 0.2180 12-09-20_19:12:19, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_3~numtaskslearned=20~tasknumber=3, RandSplitCIFAR100_3, 20, 0.9320, 0.2000 12-09-20_19:12:20, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_4~numtaskslearned=20~tasknumber=4, RandSplitCIFAR100_4, 20, 0.8760, 0.1420 12-09-20_19:12:20, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_5~numtaskslearned=20~tasknumber=5, RandSplitCIFAR100_5, 20, 0.9500, 0.2000 12-09-20_19:12:20, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_6~numtaskslearned=20~tasknumber=6, RandSplitCIFAR100_6, 20, 0.9180, 0.2000 12-09-20_19:12:21, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_7~numtaskslearned=20~tasknumber=7, RandSplitCIFAR100_7, 20, 0.8100, 0.2000 12-09-20_19:12:21, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_8~numtaskslearned=20~tasknumber=8, RandSplitCIFAR100_8, 20, 0.8920, 0.2000 12-09-20_19:12:21, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_9~numtaskslearned=20~tasknumber=9, RandSplitCIFAR100_9, 20, 0.8680, 0.2240 12-09-20_19:12:21, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_10~numtaskslearned=20~tasknumber=10, RandSplitCIFAR100_10, 20, 0.9500, 0.2140 12-09-20_19:12:22, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_11~numtaskslearned=20~tasknumber=11, RandSplitCIFAR100_11, 20, 0.8040, 0.2000 12-09-20_19:12:22, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_12~numtaskslearned=20~tasknumber=12, RandSplitCIFAR100_12, 20, 0.9000, 0.2040 12-09-20_19:12:22, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_13~numtaskslearned=20~tasknumber=13, RandSplitCIFAR100_13, 20, 0.8880, 0.2020 12-09-20_19:12:22, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_14~numtaskslearned=20~tasknumber=14, RandSplitCIFAR100_14, 20, 0.8820, 0.1940 12-09-20_19:12:23, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_15~numtaskslearned=20~tasknumber=15, RandSplitCIFAR100_15, 20, 0.9120, 0.2000 12-09-20_19:12:23, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_16~numtaskslearned=20~tasknumber=16, RandSplitCIFAR100_16, 20, 0.8940, 0.2020 12-09-20_19:12:23, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_17~numtaskslearned=20~tasknumber=17, RandSplitCIFAR100_17, 20, 0.9160, 0.2000 12-09-20_19:12:23, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_18~numtaskslearned=20~tasknumber=18, RandSplitCIFAR100_18, 20, 0.9280, 0.2140 12-09-20_19:12:24, id=supsup~seed=0~sparsity=16~try=1~task=RandSplitCIFAR100_19~numtaskslearned=20~tasknumber=19, RandSplitCIFAR100_19, 20, 0.8100, 0.8100