Closed humzakhan340 closed 5 years ago
Are you using the latest bioc release 3.9? what's the output of getPopStats(gs[[1]])
?how about use ggcyto::autoplot(gs[[1]])
I have now updated to 3.9. Output of getPopStats(gs[[1]])
is
ggcyto::autoplot(gs[[1]])
yields
print(plotGate(gs[[1]], getNodes(gs[[4]])[8])) still gives the error packet1 message.
Unsure of how to troubleshoot.
paste your sessionInfo()
and if possible, share the link to the example xml and fcs file for troubleshooting
also what is the output of getData(gs[[1]])
, range(getData(gs[[1]]))
and range(getData(gs[[1]]), "data")
sessionInfo()
:
sessionInfo() R version 3.6.0 (2019-04-26) Platform: x86_64-apple-darwin15.6.0 (64-bit) Running under: macOS Mojave 10.14
Matrix products: default BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
Random number generation: RNG: Mersenne-Twister Normal: Inversion Sample: Rounding
locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages: [1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggcyto_1.12.0 ggplot2_3.1.1 openCyto_1.22.0
[4] hexbin_1.27.3 CytoML_1.10.0 flowWorkspace_3.32.0
[7] ncdfFlow_2.30.0 BH_1.69.0-1 RcppArmadillo_0.9.400.3.0
[10] flowCore_1.50.0
loaded via a namespace (and not attached):
[1] Biobase_2.44.0 splines_3.6.0 jsonlite_1.6 R.utils_2.8.0
[5] ellipse_0.4.1 gtools_3.8.1 RcppParallel_4.4.3 assertthat_0.2.1
[9] BiocManager_1.30.4 stats4_3.6.0 latticeExtra_0.6-28 RBGL_1.60.0
[13] yaml_2.2.0 robustbase_0.93-5 pillar_1.4.1 lattice_0.20-38
[17] glue_1.3.1 RUnit_0.4.32 digest_0.6.19 RColorBrewer_1.1-2
[21] colorspace_1.4-1 Matrix_1.2-17 R.oo_1.22.0 plyr_1.8.4
[25] pcaPP_1.9-73 XML_3.98-1.19 pkgconfig_2.0.2 fda_2.4.8
[29] zlibbioc_1.30.0 purrr_0.3.2 corpcor_1.6.9 mvtnorm_1.0-10
[33] scales_1.0.0 flowStats_3.42.0 tibble_2.1.1 withr_2.1.2
[37] flowViz_1.48.0 BiocGenerics_0.30.0 lazyeval_0.2.2 mnormt_1.5-5
[41] magrittr_1.5 crayon_1.3.4 IDPmisc_1.1.19 mclust_5.4.3
[45] ks_1.11.5 R.methodsS3_1.7.1 MASS_7.3-51.4 graph_1.62.0
[49] tools_3.6.0 data.table_1.12.2 flowClust_3.22.0 matrixStats_0.54.0
[53] stringr_1.4.0 munsell_0.5.0 cluster_2.0.9 flowUtils_1.48.0
[57] compiler_3.6.0 rlang_0.3.4 grid_3.6.0 base64enc_0.1-3
[61] gtable_0.3.0 rrcov_1.4-7 R6_2.4.0 gridExtra_2.3
[65] dplyr_0.8.1 clue_0.3-57 KernSmooth_2.23-15 Rgraphviz_2.28.0
[69] stringi_1.4.3 parallel_3.6.0 Rcpp_1.0.1 DEoptimR_1.0-8
[73] tidyselect_0.2.5
getData(gs[[1]])
:
flowFrame object '20190515_IFNa_Phospho_Patient_UCLA116_01_1.fcs'
with 195678 cells and 64 observables:
name desc range minRange maxRange
$P1 Time
range(getData(gs[[1]]))
: Time Event_length Y89Di Pd102Di Pd104Di Pd105Di Pd106Di Pd108Di Pd110Di In115Di min 0 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 max 0 10827.344 10827.344 11583.493 11583.493 11583.493 10827.344 10827.344 10827.344 10827.344 Sn120Di I127Di Xe131Di Cs133Di Ba138Di La139Di Ce140Di Pr141Di Ce142Di min 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 max 10827.344 10827.344 10827.344 10827.344 10827.344 10827.344 11583.493 12339.576 10827.344 Nd143Di Nd144Di Nd145Di Nd146Di Sm147Di Nd148Di Sm149Di Nd150Di Eu151Di min 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 max 10827.344 10827.344 10827.344 10827.344 10827.344 10827.344 13095.626 10827.344 11583.493 Sm152Di Eu153Di Sm154Di Gd155Di Gd156Di Gd158Di Tb159Di Gd160Di Dy162Di min 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 max 10827.344 11583.493 10827.344 10827.344 10827.344 10827.344 10827.344 10827.344 10827.344 Dy163Di Dy164Di Ho165Di Er166Di Er167Di Er168Di Tm169Di Er170Di Yb171Di min 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 max 10827.344 10827.344 11583.493 10827.344 10827.344 10827.344 10827.344 10827.344 10827.344 Yb172Di Yb173Di Yb174Di Lu175Di Lu176Di Yb176Di BCKG190Di Ir191Di Ir193Di min 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 max 10827.344 10827.344 10827.344 11583.493 10827.344 10827.344 10827.344 12339.576 13095.626 Pt194Di Pt195Di Pt198Di Pb208Di Bi209Di Center Offset Width Residual min 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 1755.415 max 12339.576 12339.576 10827.344 10827.344 10827.344 11583.493 10827.344 10827.344 10827.344 range(getData(gs[[1]]),"data")
: Time Event_length Y89Di Pd102Di Pd104Di Pd105Di Pd106Di Pd108Di Pd110Di In115Di min 0 91.25533 37.44886 120.2131 120.2484 120.2054 37.44886 37.44886 37.44886 37.44886 max 0 133.85837 178.09653 232.4211 231.4589 232.4542 181.29369 182.43573 178.96159 177.50229 Sn120Di I127Di Xe131Di Cs133Di Ba138Di La139Di Ce140Di Pr141Di Ce142Di min 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 max 169.11707 181.34061 108.34167 166.79225 226.76451 178.86494 239.22801 249.50441 188.46239 Nd143Di Nd144Di Nd145Di Nd146Di Sm147Di Nd148Di Sm149Di Nd150Di Eu151Di min 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 max 207.14647 161.32687 163.85126 210.61440 204.78671 189.41962 263.88983 208.73395 234.99101 Sm152Di Eu153Di Sm154Di Gd155Di Gd156Di Gd158Di Tb159Di Gd160Di Dy162Di min 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 max 195.98438 239.15625 227.93875 230.01561 186.68214 171.12775 207.83195 195.35391 169.30504 Dy163Di Dy164Di Ho165Di Er166Di Er167Di Er168Di Tm169Di Er170Di Yb171Di min 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 max 209.10091 171.91228 238.35493 173.97954 175.44891 185.66281 193.45647 195.29120 183.42497 Yb172Di Yb173Di Yb174Di Lu175Di Lu176Di Yb176Di BCKG190Di Ir191Di Ir193Di min 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 86.40204 105.5577 max 169.04192 169.27820 186.55605 239.34271 209.62782 209.61601 104.14588 260.97015 272.3668 Pt194Di Pt195Di Pt198Di Pb208Di Bi209Di Center Offset Width Residual min 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 37.44886 max 247.73047 247.50284 206.68878 213.27591 214.06598 233.71597 187.08797 167.81908 188.97383
It seems to be loading my data fine...
looks like the instrument range
(returned from range()
) is at a entirely different scale from the actual data range (i.e. range(fr, 'data')
) in your original FCS file. Since the autoplot set the plot scale by instrument range by default, this may be the reason why the data is not visible.
Try to change the default scale to data
scale by autoplot(gs[[1]]) + ggcyto_par_set(limits = "data")
This works--thank you so much!
Describe the bug Flowcore/Flowworkspace will take in the workspace I want it to and will give me all the population statistics, but will not plot them in Rstudio.
To Reproduce --> library(flowWorkspace) library(flowCore) setwd("~/Desktop/UCLA116 CyTOF") flowDataPath <- "16-May-2019.wsp" ws<-openWorkspace(flowDataPath)
make a flowFrame
gs <- parseWorkspace(ws, name=1)
show(ws) plot(gs[[1]]) print(plotGate(gs[[1]], getNodes(gs[[4]])[8])) plotGate(gs, "191Ir, 193Ir subset")
Expected behavior I'd expect it to print out the plot just fine. This is a pretty major impediment.
Screenshots
sessionInfo(): Warning messages: 1: In min(x) : no non-missing arguments to min; returning Inf 2: In max(x) : no non-missing arguments to max; returning -Inf 3: In min(x) : no non-missing arguments to min; returning Inf 4: In max(x) : no non-missing arguments to max; returning -Inf 5: In min(x) : no non-missing arguments to min; returning Inf 6: In max(x) : no non-missing arguments to max; returning -Inf
Additional context Add any other context about the problem here.