Closed mmikhasenko closed 5 months ago
ROOT Exponent is interesting in this context,
{
"distributions": [
{ "name": "bw" },
{
"c": "alpha_exponential_inverted",
"name": "exp",
"type": "exponential_dist",
"x": "x"
}
],
"domains": [
{
"axes": [
{ "max": 10.0, "min": 0.1, "name": "alpha" },
{ "max": 10.0, "min": -10.0, "name": "x" }
],
"name": "default_domain",
"type": "product_domain"
}
],
"functions": [
{
"expression": "-alpha",
"name": "alpha_exponential_inverted",
"type": "generic_function"
}
],
"metadata": {
"hs3_version": "0.2",
"packages": [{ "name": "ROOT", "version": "6.33.01" }]
},
"misc": {
"ROOT_internal": {
"attributes": {
"alpha_exponential_inverted": {
"dict": { "autogen_transform_exponential_original": "alpha" },
"tags": ["autogen_transform_exponential"]
}
}
}
},
"parameter_points": [
{
"name": "default_values",
"parameters": [
{ "name": "x", "value": 0.0 },
{ "name": "alpha", "value": 1.0 },
]
}
]
}
After some discussion we settled on generalizing the checksum definitions, for instance
"misc": {
"checksums": [
{
"function": "my_model_for_reaction_intensity",
"point": "validation_point1",
"return_value": 9345.853380852355
},
{
"function": "D1232_BW",
"point": "validation_point2",
"return_value": "1.0 - 3.14i"
}
]
},
Compare with what is is currently: https://github.com/RUB-EP1/amplitude-serialization/blob/ecee71af8f77bc0360b3c5d8bc85592802652eb0/models/Lc2ppiK.json#L938-L946
For this, we indeed need to define which arguments the function expects, e.g.:
{
"name": "D1232_BW",
"x": "x", // variable because value is string
"l": 1,
"mb": 0.13957018,
"type": "BreitWigner",
"d": 1.5,
"mass": 1.232,
"ma": 0.938272046,
"width": 0.117
},
Bit tricky how to call the argument for a Breit-Wigner. $\sigma$ would be a common choice, but that's is confusing with Gaussian (where the BW $\sigma$ has the role of $\mu$). In the example, we stick with x
to indicate that it is the first argument in a 1-dimensional function.
@IlyaSegal would you like to help with this issue?
(updating the header with the guidelines)
Our functions used for lineshapes, should indicared mass squared variable that in depends on.
The description,
would need to mention
x: m_ppi_squared
, and definem_ppi_squared
below.In HS3, all distributions and functions have their variables listed, e.g.
Gauss(x|mean,sigma)
describes all three variables.How to proceed
Preparation
Incorporate it in JSON:
m12sq
,m23sq
, andm31sq
in "domains"(?).