Open XiaoLongtaoo opened 10 months ago
上面的问题我发现是由于你们Config的设置上似乎出现了点问题,这里的config = Config(model=DuoRec, dataset=dataset, config_file_list=config_file_list)
DuoRec不能以model_name='DuoRec'
的参数形式传进去,否则将会报错,对于自定义的模型不能通过传model=model_name
来调用,只能直接以model=Customize model name
这个形式调用。但是这里出现了另一个问题,请问这里的sem_aug
是哪里出现的呢,我看DuoRec的source code,发现他们的实现似乎除了模型以及配置文件外,其余都与recbole的默认文件保持一致。如果我哪里出现了错误,劳烦指正我一下,谢谢!O(∩_∩)O
Traceback (most recent call last):
File "/home/xiaolongtao/UniSRec/run_baseline.py", line 96, in <module>
baseline_func(model=args.model, dataset=args.dataset, config_file_list=config_file_list)
File "/home/xiaolongtao/UniSRec/run_baseline.py", line 64, in run_baseline
best_valid_score, best_valid_result = trainer.fit(
File "/home/xiaolongtao/anaconda3/envs/UniSRec/lib/python3.9/site-packages/recbole/trainer/trainer.py", line 439, in fit
train_loss = self._train_epoch(
File "/home/xiaolongtao/anaconda3/envs/UniSRec/lib/python3.9/site-packages/recbole/trainer/trainer.py", line 245, in _train_epoch
losses = loss_func(interaction)
File "/home/xiaolongtao/UniSRec/baselines/duorec.py", line 190, in calculate_loss
sem_aug, sem_aug_lengths = interaction['sem_aug'], interaction['sem_aug_lengths']
File "/home/xiaolongtao/anaconda3/envs/UniSRec/lib/python3.9/site-packages/recbole/data/interaction.py", line 135, in __getitem__
return self.interaction[index]
KeyError: 'sem_aug'
@XiaoLongtaoo 你好!
这里的sem_aug
是soure code写在dataloader的duorec_aug
用于数据增强的部分
@XiaoLongtaoo 你好! 这里的
sem_aug
是soure code写在dataloader的duorec_aug
用于数据增强的部分
我找到了这个数据增强办法,但是这里仍然存在一个问题,当我将它用在我自己的dataloader中时,代码如下所示:
def duorec_aug(self, cur_data, index, interaction):
cur_same_target = self.same_target_index[index]
null_index = []
sample_pos = []
for i, targets in enumerate(cur_same_target):
# in case there is no same-target sequence
# don't know why this happens since the filtering has been applied
if len(targets) == 0:
sample_pos.append(-1)
null_index.append(i)
else:
sample_pos.append(np.random.choice(targets))
sem_pos_seqs = self.static_item_id_list[sample_pos]
sem_pos_lengths = self.static_item_length[sample_pos]
if null_index:
sem_pos_seqs[null_index] = cur_data['item_id_list'][null_index]
sem_pos_lengths[null_index] = cur_data['item_length'][null_index]
cur_data.update(Interaction({'sem_aug': sem_pos_seqs, 'sem_aug_lengths': sem_pos_lengths}))
return cur_data
训练时所用的dataloader代码如下:
class CustomizedTrainDataLoader(TrainDataLoader):
def __init__(self, config, dataset, sampler, shuffle=False):
super().__init__(config, dataset, sampler, shuffle=shuffle)
self.transform = construct_transform(config)
self.model = config['model']
"special parameters for DuoRec"
if self.model == 'DuoRec':
self.same_target_index = dataset.same_target_index
self.static_item_id_list = dataset.static_item_id_list
self.static_item_length = dataset.static_item_length
# self.static_item_id_list = self.dataset.inter_feat['item_id_list']
# self.static_item_length = self.dataset.inter_feat['item_length']
""""""
def _next_batch_data(self):
cur_data = super()._next_batch_data()
# index = cur_data.index()
index = slice(self.pr - self.step, self.pr)
""""""
if self.model == 'DuoRec':
cur_data = self.duorec_aug(self, cur_data, index)
return cur_data
""""""
else:
transformed_data = self.transform(self, cur_data)
return transformed_data
def duorec_aug(self, cur_data, index, interaction):
cur_same_target = self.same_target_index[index]
null_index = []
sample_pos = []
for i, targets in enumerate(cur_same_target):
# in case there is no same-target sequence
# don't know why this happens since the filtering has been applied
if len(targets) == 0:
sample_pos.append(-1)
null_index.append(i)
else:
sample_pos.append(np.random.choice(targets))
sem_pos_seqs = self.static_item_id_list[sample_pos]
sem_pos_lengths = self.static_item_length[sample_pos]
if null_index:
sem_pos_seqs[null_index] = cur_data['item_id_list'][null_index]
sem_pos_lengths[null_index] = cur_data['item_length'][null_index]
cur_data.update(Interaction({'sem_aug': sem_pos_seqs, 'sem_aug_lengths': sem_pos_lengths}))
return cur_data
请问为什么读取训练数据时仍然不会更新,数据中还是没有出现sem_aug
, sem_aug_lengths
这两个属性,请问这是哪里出现了问题呢?感谢!
同问,请问这个问题解决了吗
目前在跑baseline---DuoRec,按照recbole的Customize Models指南以及作者相应的源码,实现了
class DuoRec(SequentialRecommender)
(主要是DuoRec模型定义以及配置文件这两部分)。但是运行python run_baseline.py --model DuoRec -d my_dataset --config_files=props/finetune.yaml
其中run_baseline
的实现与https://recbole.io/docs/developer_guide/customize_models.html 的python run.py --embedding_size=64
实现类似。 产生了下列报错:Traceback (most recent call last): File "/home/xiaolongtao/UniSRec/run_baseline.py", line 83, in <module> baseline_func(model=args.model, dataset=args.dataset, config_file_list=config_file_list) File "/home/xiaolongtao/UniSRec/run_baseline.py", line 19, in run_baseline config = Config(model=model_name, dataset=dataset, config_file_list=config_file_list) File "/home/xiaolongtao/anaconda3/envs/UniSRec/lib/python3.9/site-packages/recbole/config/configurator.py", line 88, in __init__ self.model, self.model_class, self.dataset = self._get_model_and_dataset( File "/home/xiaolongtao/anaconda3/envs/UniSRec/lib/python3.9/site-packages/recbole/config/configurator.py", line 216, in _get_model_and_dataset final_model_class = get_model(final_model) File "/home/xiaolongtao/anaconda3/envs/UniSRec/lib/python3.9/site-packages/recbole/utils/utils.py", line 81, in get_model raise ValueError( ValueError: model_name [DuoRec] is not the name of an existing model.
请问这里哪里出了问题呢,模型以及相应的参数配置都实现了,而且也确保了Config()
的model是有值的。