Tried to : python tools/train.py config/nanodet-plus-m_320.yml error:
pytorch_lightning.utilities.cloud_io.get_filesystem has been deprecated in v1.8.0 and will be"
[NanoDet][01-04 10:28:00]INFO:Setting up data...
loading annotations into memory...
Done (t=18.55s)
creating index...
index created!
loading annotations into memory...
Done (t=0.56s)
creating index...
index created!
[NanoDet][01-04 10:28:21]INFO:Creating model...
model size is 1.0x
init weights...
=> loading pretrained model https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth
Finish initialize NanoDet-Plus Head.
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/torch/cuda/init.py:143: UserWarning:
NVIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
If you want to use the NVIDIA GeForce RTX 3090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/
0 | model | NanoDetPlus | 4.3 M
1 | avg_model | NanoDetPlus | 4.3 M
8.7 M Trainable params
0 Non-trainable params
8.7 M Total params
34.647 Total estimated model params size (MB)
[NanoDet][01-04 10:28:21]INFO:Weight Averaging is enabled
/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the num_workers argument(try 40 which is the number of cpus on this machine) in theDataLoader` init to improve performance.
category=PossibleUserWarning,
Traceback (most recent call last):
File "tools/train.py", line 146, in
main(args)
File "tools/train.py", line 141, in main
trainer.fit(task, train_dataloader, val_dataloader)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 604, in fit
self, self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/call.py", line 38, in _call_and_handle_interrupt
return trainer_fn(*args, *kwargs)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 645, in _fit_impl
self._run(model, ckpt_path=self.ckpt_path)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1098, in _run
results = self._run_stage()
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1177, in _run_stage
self._run_train()
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1200, in _run_train
self.fit_loop.run()
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/loops/loop.py", line 194, in run
self.on_run_start(args, **kwargs)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/loops/fit_loop.py", line 206, in on_run_start
self.trainer.reset_train_dataloader(self.trainer.lightning_module)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1552, in reset_train_dataloader
if has_len_all_ranks(self.train_dataloader, self.strategy, module)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/utilities/data.py", line 110, in
has_len_all_ranks
if total_length == 0:
RuntimeError: CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Tried to : python tools/train.py config/nanodet-plus-m_320.yml error:
pytorch_lightning.utilities.cloud_io.get_filesystem
has been deprecated in v1.8.0 and will be" [NanoDet][01-04 10:28:00]INFO:Setting up data... loading annotations into memory... Done (t=18.55s) creating index... index created! loading annotations into memory... Done (t=0.56s) creating index... index created! [NanoDet][01-04 10:28:21]INFO:Creating model... model size is 1.0x init weights... => loading pretrained model https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth Finish initialize NanoDet-Plus Head. GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs /root/anaconda3/envs/nanodet/lib/python3.7/site-packages/torch/cuda/init.py:143: UserWarning: NVIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70. If you want to use the NVIDIA GeForce RTX 3090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name)) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]
| Name | Type | Params
0 | model | NanoDetPlus | 4.3 M 1 | avg_model | NanoDetPlus | 4.3 M
8.7 M Trainable params 0 Non-trainable params 8.7 M Total params 34.647 Total estimated model params size (MB) [NanoDet][01-04 10:28:21]INFO:Weight Averaging is enabled /root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the
main(args)
File "tools/train.py", line 141, in main
trainer.fit(task, train_dataloader, val_dataloader)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 604, in fit
self, self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/call.py", line 38, in _call_and_handle_interrupt
return trainer_fn(*args, *kwargs)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 645, in _fit_impl
self._run(model, ckpt_path=self.ckpt_path)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1098, in _run
results = self._run_stage()
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1177, in _run_stage
self._run_train()
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1200, in _run_train
self.fit_loop.run()
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/loops/loop.py", line 194, in run
self.on_run_start(args, **kwargs)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/loops/fit_loop.py", line 206, in on_run_start
self.trainer.reset_train_dataloader(self.trainer.lightning_module)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1552, in reset_train_dataloader
if has_len_all_ranks(self.train_dataloader, self.strategy, module)
File "/root/anaconda3/envs/nanodet/lib/python3.7/site-packages/pytorch_lightning/utilities/data.py", line 110, in
has_len_all_ranks
if total_length == 0:
RuntimeError: CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
num_workers
argument(try 40 which is the number of cpus on this machine) in the
DataLoader` init to improve performance. category=PossibleUserWarning, Traceback (most recent call last): File "tools/train.py", line 146, inpython3.7 cuda==10.2 gpu==RT3090 UBUNTU20.04
Thanks