RasaHQ / rasa

πŸ’¬ Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants
https://rasa.com/docs/rasa/
Apache License 2.0
18.95k stars 4.64k forks source link

Project created with `rasa init` not usable #7158

Closed iwt-kschoenrock closed 3 years ago

iwt-kschoenrock commented 4 years ago

Rasa version: Rasa 1.10.16

Rasa SDK version (if used & relevant): 1.10.3

Rasa X version (if used & relevant): 0.32.2

Python version: 3.7.8

Operating system (windows, osx, ...): macOS 10.15.7

Issue: When installing rasa to a new project with pipenv, installation fails because pipenv is unable to lock dependencies (conflicting versions of multidict as reported in #7124 ). I installed rasa-X<0.33 in the virtualenv with pip, which then completes, again with warnings about multidict:

sanic 19.12.3 requires multidict==5.0.0, but you'll have multidict 4.7.6 which is incompatible.
tensorflow 2.1.2 requires gast==0.2.2, but you'll have gast 0.4.0 which is incompatible.
tensorflow 2.1.2 requires numpy<1.19.0,>=1.16.0, but you'll have numpy 1.19.3 which is incompatible.
rasa 1.10.16 requires aiohttp<3.7,>=3.6, but you'll have aiohttp 3.7.2 which is incompatible.
rasa 1.10.16 requires prompt-toolkit<3.0,>=2.0, but you'll have prompt-toolkit 3.0.8 which is incompatible.
rasa 1.10.16 requires pytz<2020.0,>=2019.1, but you'll have pytz 2020.4 which is incompatible.
Successfully installed GitPython-3.1.11 Mako-1.1.3 MarkupSafe-1.1.1 PyYAML-5.3.1 SQLAlchemy-1.3.20 absl-py-0.9.0 aiofiles-0.6.0 aiohttp-3.7.2 alembic-1.4.3 apscheduler-3.6.3 astor-0.8.1 async-generator-1.10 async-timeout-3.0.1 attrs-19.3.0 boto3-1.16.9 botocore-1.19.9 cached-property-1.5.2 cachetools-4.1.1 certifi-2020.6.20 cffi-1.14.3 chardet-3.0.4 cloudpickle-1.3.0 colorclass-2.2.0 coloredlogs-10.0 colorhash-1.0.2 cryptography-2.9.2 cycler-0.10.0 decorator-4.4.2 dnspython-1.16.0 docopt-0.6.2 fbmessenger-6.0.0 future-0.18.2 gast-0.4.0 gevent-1.5.0 gitdb-4.0.5 google-auth-1.23.0 google-auth-oauthlib-0.4.2 google-pasta-0.2.0 greenlet-0.4.17 grpcio-1.33.2 h11-0.8.1 h2-3.2.0 h5py-3.0.0 hpack-3.0.0 hstspreload-2020.10.20 httplib2-0.18.1 httptools-0.1.1 httpx-0.9.3 humanfriendly-8.2 hyperframe-5.2.0 idna-2.10 importlib-metadata-2.0.0 isodate-0.6.0 jmespath-0.10.0 joblib-0.17.0 jsonpickle-1.4.1 jsonschema-3.2.0 kafka-python-1.4.7 keras-applications-1.0.8 keras-preprocessing-1.1.0 kiwisolver-1.3.1 markdown-3.3.3 matplotlib-3.2.2 mattermostwrapper-2.2 multidict-4.7.6 networkx-2.4 numpy-1.19.3 oauth2client-4.1.3 oauthlib-3.1.0 opt-einsum-3.3.0 packaging-20.4 pika-1.1.0 prompt-toolkit-3.0.8 protobuf-3.13.0 psycopg2-binary-2.8.6 pyasn1-0.4.8 pyasn1-modules-0.2.8 pycparser-2.20 pydot-1.4.1 pyjwt-1.7.1 pykwalify-1.7.0 pymongo-3.8.0 pyparsing-2.4.7 pyrsistent-0.17.3 pysocks-1.7.1 python-crfsuite-0.9.7 python-dateutil-2.8.1 python-editor-1.0.4 python-engineio-3.12.1 python-socketio-4.5.1 python-telegram-bot-12.8 pytz-2020.4 questionary-1.5.2 rasa-1.10.16 rasa-sdk-1.10.3 rasa-x-0.32.2 redis-3.5.3 regex-2020.6.8 requests-2.24.0 requests-oauthlib-1.3.0 requests-toolbelt-0.9.1 rfc3986-1.4.0 rocketchat-API-1.3.1 rsa-4.6 ruamel.yaml-0.16.12 ruamel.yaml.clib-0.2.2 s3transfer-0.3.3 sanic-19.12.3 sanic-cors-0.10.0.post3 sanic-jwt-1.3.2 sanic-plugins-framework-0.9.4.post1 scikit-learn-0.22.2.post1 scipy-1.5.3 six-1.15.0 sklearn-crfsuite-0.3.6 slackclient-2.9.3 smmap-3.0.4 sniffio-1.2.0 tabulate-0.8.7 tensorboard-2.1.1 tensorflow-2.1.2 tensorflow-addons-0.7.1 tensorflow-estimator-2.1.0 tensorflow-hub-0.8.0 tensorflow-probability-0.9.0 termcolor-1.1.0 terminaltables-3.1.0 tornado-6.1 tqdm-4.45.0 twilio-6.26.3 typing-extensions-3.7.4.3 tzlocal-2.1 ujson-1.35 urllib3-1.25.11 uvloop-0.14.0 wcwidth-0.2.5 webexteamssdk-1.3 websockets-8.1 werkzeug-1.0.1 wrapt-1.12.1 yarl-1.6.2 zipp-3.4.0

After installing Rasa, I ran rasa init and, although the initalization finished, rasa interactive was not working. This error does not happen when installing rasa<2 directly (without Rasa X).

Error (including full traceback):

rasa init
Welcome to Rasa! πŸ€–

To get started quickly, an initial project will be created.
If you need some help, check out the documentation at https://rasa.com/docs/rasa.
Now let's start! πŸ‘‡πŸ½

? Please enter a path where the project will be created [default: current directory] .
? Directory '/Users/homedir/repos/textmining/test_rasax' is not empty. Continue?  Yes
Created project directory at '/Users/homedir/repos/textmining/test_rasax'.
Finished creating project structure.
? Do you want to train an initial model? πŸ’ͺ🏽  Yes
Training an initial model...
Training Core model...
Processed Story Blocks: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 1822.18it/s, # trackers=1]
Processed Story Blocks: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 1301.04it/s, # trackers=5]
Processed Story Blocks: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 60.00it/s, # trackers=20]
Processed Story Blocks: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 321.11it/s, # trackers=24]
Processed trackers: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 1149.19it/s, # actions=16]
Processed actions: 16it [00:00, 11518.86it/s, # examples=16]
Processed trackers: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 231/231 [00:00<00:00, 619.85it/s, # actions=126]
Epochs:   0%|                                                                                                                                                                                                                             | 0/100 [00:00<?, ?it/s]/Users/homedir/.pyenv/versions/3.7.8/lib/python3.7/site-packages/rasa/utils/tensorflow/model_data.py:386: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
  final_data[k].append(np.concatenate(np.array(v)))
Epochs: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 100/100 [00:06<00:00, 15.85it/s, t_loss=0.085, loss=0.013, acc=1.000]
2020-11-02 12:08:44 INFO     rasa.utils.tensorflow.models  - Finished training.
2020-11-02 12:08:44 INFO     rasa.core.agent  - Persisted model to '/var/folders/_x/3z72pyv53q10b2ps_zvh219jbmgww_/T/tmp9yc7_teo/core'
Core model training completed.
Training NLU model...
2020-11-02 12:08:44 INFO     rasa.nlu.training_data.training_data  - Training data stats:
2020-11-02 12:08:44 INFO     rasa.nlu.training_data.training_data  - Number of intent examples: 43 (7 distinct intents)
2020-11-02 12:08:44 INFO     rasa.nlu.training_data.training_data  -   Found intents: 'goodbye', 'bot_challenge', 'deny', 'mood_great', 'affirm', 'mood_unhappy', 'greet'
2020-11-02 12:08:44 INFO     rasa.nlu.training_data.training_data  - Number of response examples: 0 (0 distinct responses)
2020-11-02 12:08:44 INFO     rasa.nlu.training_data.training_data  - Number of entity examples: 0 (0 distinct entities)
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Starting to train component WhitespaceTokenizer
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Finished training component.
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Starting to train component RegexFeaturizer
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Finished training component.
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Starting to train component LexicalSyntacticFeaturizer
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Finished training component.
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Starting to train component CountVectorsFeaturizer
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Finished training component.
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Starting to train component CountVectorsFeaturizer
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Finished training component.
2020-11-02 12:08:44 INFO     rasa.nlu.model  - Starting to train component DIETClassifier
Epochs:   0%|                                                                                                                                                                                                                             | 0/100 [00:00<?, ?it/s]/Users/homedir/.pyenv/versions/3.7.8/lib/python3.7/site-packages/rasa/utils/tensorflow/model_data.py:386: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
  final_data[k].append(np.concatenate(np.array(v)))
Epochs: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 100/100 [00:05<00:00, 16.74it/s, t_loss=1.468, i_loss=0.088, i_acc=1.000]
2020-11-02 12:08:55 INFO     rasa.utils.tensorflow.models  - Finished training.
2020-11-02 12:08:55 INFO     rasa.nlu.model  - Finished training component.
2020-11-02 12:08:55 INFO     rasa.nlu.model  - Starting to train component EntitySynonymMapper
2020-11-02 12:08:55 INFO     rasa.nlu.model  - Finished training component.
2020-11-02 12:08:55 INFO     rasa.nlu.model  - Starting to train component ResponseSelector
2020-11-02 12:08:55 INFO     rasa.nlu.selectors.response_selector  - Retrieval intent parameter was left to its default value. This response selector will be trained on training examples combining all retrieval intents.
2020-11-02 12:08:55 INFO     rasa.nlu.model  - Finished training component.
2020-11-02 12:08:55 INFO     rasa.nlu.model  - Successfully saved model into '/var/folders/_x/3z72pyv53q10b2ps_zvh219jbmgww_/T/tmp9yc7_teo/nlu'
NLU model training completed.
Your Rasa model is trained and saved at '/Users/homedir/repos/textmining/test_rasax/models/20201102-120817.tar.gz'.
? Do you want to speak to the trained assistant on the command line? πŸ€–  Yes
2020-11-02 12:10:06 INFO     root  - Connecting to channel 'cmdline' which was specified by the '--connector' argument. Any other channels will be ignored. To connect to all given channels, omit the '--connector' argument.
2020-11-02 12:10:06 INFO     root  - Starting Rasa server on http://localhost:5005
2020-11-02 12:10:09 INFO     root  - Rasa server is up and running.
Bot loaded. Type a message and press enter (use '/stop' to exit):
2020-11-02 12:10:09 ERROR    asyncio  - Task exception was never retrieved
future: <Task finished coro=<configure_app.<locals>.run_cmdline_io() done, defined at /Users/homedir/.pyenv/versions/3.7.8/lib/python3.7/site-packages/rasa/core/run.py:128> exception=RuntimeError('this event loop is already running.')>
Traceback (most recent call last):
  File "/Users/homedir/.pyenv/versions/3.7.8/lib/python3.7/site-packages/rasa/core/run.py", line 134, in run_cmdline_io
    sender_id=conversation_id,
  File "/Users/homedir/.pyenv/versions/3.7.8/lib/python3.7/site-packages/rasa/core/channels/console.py", line 142, in record_messages
    text = get_user_input(button_question)
  File "/Users/homedir/.pyenv/versions/3.7.8/lib/python3.7/site-packages/rasa/core/channels/console.py", line 78, in get_user_input
    style=Style([("qmark", "#b373d6"), ("", "#b373d6")]),
Your input ->  hello
^Ce 45, in ask
    return self.unsafe_ask(patch_stdout)
  File "/Users/homedir/.pyenv/versions/3.7.8/lib/python3.7/site-packages/questionary/question.py", line 59, in unsafe_ask
    return self.application.run()
  File "/Users/homedir/.pyenv/versions/3.7.8/lib/python3.7/site-packages/prompt_toolkit/application/application.py", line 817, in run
    self.run_async(pre_run=pre_run, set_exception_handler=set_exception_handler)
  File "uvloop/loop.pyx", line 1450, in uvloop.loop.Loop.run_until_complete
  File "uvloop/loop.pyx", line 1443, in uvloop.loop.Loop.run_until_complete
  File "uvloop/loop.pyx", line 1351, in uvloop.loop.Loop.run_forever
  File "uvloop/loop.pyx", line 480, in uvloop.loop.Loop._run
RuntimeError: this event loop is already running.
--- Logging error ---

Command or request that led to error:

rasa init

or rasa interactive after init.

Content of configuration file (config.yml) (if relevant):

# Configuration for Rasa NLU.
# https://rasa.com/docs/rasa/nlu/components/
language: en
pipeline:
  - name: WhitespaceTokenizer
  - name: RegexFeaturizer
  - name: LexicalSyntacticFeaturizer
  - name: CountVectorsFeaturizer
  - name: CountVectorsFeaturizer
    analyzer: "char_wb"
    min_ngram: 1
    max_ngram: 4
  - name: DIETClassifier
    epochs: 100
  - name: EntitySynonymMapper
  - name: ResponseSelector
    epochs: 100

# Configuration for Rasa Core.
# https://rasa.com/docs/rasa/core/policies/
policies:
  - name: MemoizationPolicy
  - name: TEDPolicy
    max_history: 5
    epochs: 100
  - name: MappingPolicy

Content of domain file (domain.yml) (if relevant):

intents:
  - greet
  - goodbye
  - affirm
  - deny
  - mood_great
  - mood_unhappy
  - bot_challenge

responses:
  utter_greet:
  - text: "Hey! How are you?"

  utter_cheer_up:
  - text: "Here is something to cheer you up:"
    image: "https://i.imgur.com/nGF1K8f.jpg"

  utter_did_that_help:
  - text: "Did that help you?"

  utter_happy:
  - text: "Great, carry on!"

  utter_goodbye:
  - text: "Bye"

  utter_iamabot:
  - text: "I am a bot, powered by Rasa."

session_config:
  session_expiration_time: 60
  carry_over_slots_to_new_session: true
sara-tagger commented 4 years ago

Thanks for the issue, @tabergma will get back to you about it soon!

You may find help in the docs and the forum, too πŸ€—
gausie commented 3 years ago

We think this is fixed. If you're still experiencing the issue on the latest version of rasa please feel free to comment and we'll reopen the ticket!

iwt-kschoenrock commented 3 years ago

Locking with pipenv still fails (same error), but after installing it with pip the newly created project works as expected.

ghost commented 3 years ago

Hello!!.. I have passed all the commands in conda and have installed rasa but when it comes to training the model I face an issue.. I couldn't train the model .. Shows DLL file required though the folder exists.. Please help me out asap