Closed RaymondBrien closed 3 weeks ago
Training options to consider:
Example usage with different input sizes:
Smaller input: model = create_powdery_mildew_classifier(input_shape=(160, 160, 3))
Larger input: model = create_powdery_mildew_classifier(input_shape=(299, 299, 3))
Systematic Tuning Approach:
Start with architecture modifications (layer sizes, depth) Then tune regularization parameters (dropout, batch norm) Finally adjust optimization parameters (learning rate, batch size)
Cross-Validation Strategy: pythonCopyfrom sklearn.model_selection import KFold k_fold = KFold(n_splits=5, shuffle=True)
Monitoring Tips:
Watch validation loss for overfitting Monitor precision/recall trade-offs Use TensorBoard for visualization of metrics
Training options to consider:
Example usage with different input sizes:
Smaller input: model = create_powdery_mildew_classifier(input_shape=(160, 160, 3))
Larger input: model = create_powdery_mildew_classifier(input_shape=(299, 299, 3))
Systematic Tuning Approach:
Start with architecture modifications (layer sizes, depth) Then tune regularization parameters (dropout, batch norm) Finally adjust optimization parameters (learning rate, batch size)
Cross-Validation Strategy: pythonCopyfrom sklearn.model_selection import KFold k_fold = KFold(n_splits=5, shuffle=True)
Use this to validate hyperparameter choices
Monitoring Tips:
Watch validation loss for overfitting Monitor precision/recall trade-offs Use TensorBoard for visualization of metrics