RaymondBrien / cherry-ml

PP5 Project Submission for Code Institute: Predictive Analytics
0 stars 1 forks source link

Define model 1 CV and Monitoring strategy #21

Closed RaymondBrien closed 3 weeks ago

RaymondBrien commented 4 weeks ago

Training options to consider:

Example usage with different input sizes:

Smaller input: model = create_powdery_mildew_classifier(input_shape=(160, 160, 3))

Larger input: model = create_powdery_mildew_classifier(input_shape=(299, 299, 3))

Systematic Tuning Approach:

Start with architecture modifications (layer sizes, depth) Then tune regularization parameters (dropout, batch norm) Finally adjust optimization parameters (learning rate, batch size)

Cross-Validation Strategy: pythonCopyfrom sklearn.model_selection import KFold k_fold = KFold(n_splits=5, shuffle=True)

Use this to validate hyperparameter choices

Monitoring Tips:

Watch validation loss for overfitting Monitor precision/recall trade-offs Use TensorBoard for visualization of metrics