ReactiveBayes / RxInfer.jl

Julia package for automated Bayesian inference on a factor graph with reactive message passing
MIT License
265 stars 23 forks source link

good cognition objective paper #155

Closed zdx3578 closed 12 months ago

zdx3578 commented 12 months ago

https://arxiv.org/abs/2209.01034

A taxonomy of surprise definitions Surprising events trigger measurable brain activity and influence human behavior by affecting learning, memory, and decision-making. Currently there is, however, no consensus on the definition of surprise. Here we identify 18 mathematical definitions of surprise in a unifying framework. We first propose a technical classification of these definitions into three groups based on their dependence on an agent's belief, show how they relate to each other, and prove under what conditions they are indistinguishable. Going beyond this technical analysis, we propose a taxonomy of surprise definitions and classify them into four conceptual categories based on the quantity they measure: (i) 'prediction surprise' measures a mismatch between a prediction and an observation; (ii) 'change-point detection surprise' measures the probability of a change in the environment; (iii) 'confidence-corrected surprise' explicitly accounts for the effect of confidence; and (iv) 'information gain surprise' measures the belief-update upon a new observation. The taxonomy poses the foundation for principled studies of the functional roles and physiological signatures of surprise in the brain.

https://arxiv.org/abs/1907.02936 Surprise-based learning allows agents to rapidly adapt to non-stationary stochastic environments characterized by sudden changes. We show that exact Bayesian inference in a hierarchical model gives rise to a surprise-modulated trade-off between forgetting old observations and integrating them with the new ones. The modulation depends on a probability ratio, which we call "Bayes Factor Surprise", that tests the prior belief against the current belief. We demonstrate that in several existing approximate algorithms the Bayes Factor Surprise modulates the rate of adaptation to new observations. We derive three novel surprised-based algorithms, one in the family of particle filters, one in the family of variational learning, and the other in the family of message passing, that have constant scaling in observation sequence length and particularly simple update dynamics for any distribution in the exponential family. Empirical results show that these surprise-based algorithms estimate parameters better than alternative approximate approaches and reach levels of performance comparable to computationally more expensive algorithms. The Bayes Factor Surprise is related to but different from Shannon Surprise. In two hypothetical experiments, we make testable predictions for physiological indicators that dissociate the Bayes Factor Surprise from Shannon Surprise. The theoretical insight of casting various approaches as surprise-based learning, as well as the proposed online algorithms, may be applied to the analysis of animal and human behavior, and to reinforcement learning in non-stationary environments.

bartvanerp commented 12 months ago

Thank you very much for sharing. I will forward the papers to our research group.