dense_correspondence/dataset/simple_datasets_test.ipynb runs fine. However, I get the following error when I run dense_correspondence/training/training_tutorial.ipynb:
TypeError Traceback (most recent call last)
in ()
5 print "training descriptor of dimension %d" %(d)
6 train = DenseCorrespondenceTraining(dataset=dataset, config=train_config)
----> 7 train.run()
8 print "finished training descriptor of dimension %d" %(d)
/home/kevink/code/dense_correspondence/training/training.pyc in run(self, loss_current_iteration, use_pretrained)
242 if not use_pretrained:
243 # create new network and optimizer
--> 244 self._dcn = self.build_network()
245 self._optimizer = self._construct_optimizer(self._dcn.parameters())
246 else:
/home/kevink/code/dense_correspondence/training/training.pyc in build_network(self)
129
130 return DenseCorrespondenceNetwork.from_config(self._config['dense_correspondence_network'],
--> 131 load_stored_params=False)
132
133 def _construct_optimizer(self, parameters):
/home/kevink/code/dense_correspondence/network/dense_correspondence_network.pyc in from_config(config, load_stored_params, model_param_file)
412 config["backbone"]["resnet_name"] = "Resnet34_8s"
413
--> 414 fcn = DenseCorrespondenceNetwork.get_fcn(config)
415
416 if 'normalize' in config:
/home/kevink/code/dense_correspondence/network/dense_correspondence_network.pyc in get_fcn(config)
373 if config["backbone"]["model_class"] == "Resnet":
374 resnet_model = config["backbone"]["resnet_name"]
--> 375 fcn = getattr(resnet_dilated, resnet_model)(num_classes=config['descriptor_dimension'])
376
377 elif config["backbone"]["model_class"] == "Unet":
/home/kevink/code/external/pytorch-segmentation-detection/pytorch_segmentation_detection/models/resnet_dilated.py in __init__(self, num_classes)
245 pretrained=True,
246 output_stride=8,
--> 247 remove_avg_pool_layer=True)
248
249 # Randomly initialize the 1x1 Conv scoring layer
/usr/local/lib/python2.7/dist-packages/torchvision/models/resnet.pyc in resnet34(pretrained, progress, **kwargs)
235 """
236 return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
--> 237 **kwargs)
238
239
/usr/local/lib/python2.7/dist-packages/torchvision/models/resnet.pyc in _resnet(arch, block, layers, pretrained, progress, **kwargs)
208
209 def _resnet(arch, block, layers, pretrained, progress, **kwargs):
--> 210 model = ResNet(block, layers, **kwargs)
211 if pretrained:
212 state_dict = load_state_dict_from_url(model_urls[arch],
TypeError: __init__() got an unexpected keyword argument 'fully_conv'
dense_correspondence/dataset/simple_datasets_test.ipynb runs fine. However, I get the following error when I run dense_correspondence/training/training_tutorial.ipynb:
TypeError Traceback (most recent call last)