SBRG / bigg_models

The BiGG Models website server
http://bigg.ucsd.edu
Other
77 stars 18 forks source link

use light intensity as a constraint to predict the maximum growth #336

Closed math248 closed 5 years ago

math248 commented 5 years ago

Helle everybody, I work on a linux Ubuntu 18.04 with the icZ843 model of Chlorella Vulgaris. And I use Cobrapy to analyse the model prediction accuracy. And I was wondering if it was possible to predict the max growth at all light intensity. I mean a graph with the OD and the growth rate. Because when I look at the SBML model I see that there are not lower/upper bound for the light intensity and I don't understand how the light is sued in the prediction. Thanks in advance, Regards.

matthiaskoenig commented 5 years ago

@math248 I can't find the icZ843 model in the Bigg data base. Can you provide a link to the SBML then I could have a look how light intensity is used in the model. Best Matthias

math248 commented 5 years ago

You can find the model in the supplementary Data in this link : http://www.plantphysiol.org/content/172/1/589/tab-figures-data You have the Heterotrophy/mixotrophy and photoautotrophy model Thanks matthias :-)

matthiaskoenig commented 5 years ago

Hi @math248, the following happens in the model (as to my knowledge) which is quit clever.

See for instance the light source solar_litho which is earth light spectra.

<reaction id="R_PRISM_solar_litho" name="spectral decomposition of solar light measured from Earth&apos;s surface" reversible="false">
        <notes>
          <body xmlns="http://www.w3.org/1999/xhtml">
            <p>GENE_ASSOCIATION: </p>
            <p>SUBSYSTEM: </p>
            <p>EC Number: </p>
            <p>Confidence Level: </p>
            <p>AUTHORS: </p>
            <p/>
          </body>
        </notes>
        <listOfReactants>
          <speciesReference species="M_photonVis_e" stoichiometry="1"/>
        </listOfReactants>
        <listOfProducts>
          <speciesReference species="M_photon298_c" stoichiometry="4.26984325300204e-005"/>
          <speciesReference species="M_photon437_u" stoichiometry="0.088253056987783"/>
          <speciesReference species="M_photon438_u" stoichiometry="0.187390761056649"/>
          <speciesReference species="M_photon450_h" stoichiometry="0.114958292879089"/>
          <speciesReference species="M_photon646_h" stoichiometry="0.18566429641716"/>
          <speciesReference species="M_photon673_u" stoichiometry="0.08361649412414"/>
          <speciesReference species="M_photon680_u" stoichiometry="0.094404940130699"/>
          <speciesReference species="M_photon490_h" stoichiometry="0.19581"/>
        </listOfProducts>
        <kineticLaw>
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <ci> FLUX_VALUE </ci>
          </math>
          <listOfParameters>
            <parameter id="LOWER_BOUND" value="646.06656" units="mmol_per_gDW_per_hr" constant="false"/>
            <parameter id="UPPER_BOUND" value="646.06656" units="mmol_per_gDW_per_hr" constant="false"/>
            <parameter id="FLUX_VALUE" value="0" units="mmol_per_gDW_per_hr" constant="false"/>
            <parameter id="OBJECTIVE_COEFFICIENT" value="0" units="mmol_per_gDW_per_hr" constant="false"/>
          </listOfParameters>
        </kineticLaw>
      </reaction>

Other light sources are in there but the flux bounds are set to zero, e.g.

A photon consumption reaction is for instance

<reaction id="R_PSIblue" name="photosystem I (blue light-activated)" reversible="false">
        <notes>
          <body xmlns="http://www.w3.org/1999/xhtml">
            <p>GENE_ASSOCIATION: (snap_masked_Scaffold_1102-abinit-gene-0.10 and maker_Scaffold_1102-snap-gene-0.11 and maker_Scaffold_1280-augustus-gene-0.117 and maker_Scaffold_1363-augustus-gene-0.48 and augustus_masked_Scaffold_115-abinit-gene-0.2 and genemark_Scaffold_1061-abinit-gene-0.20 and GL433837.1.286 and snap_masked_Scaffold_291-abinit-gene-0.25 and genemark_Scaffold_2058-abinit-gene-0.4 and genemark_Scaffold_1611-abinit-gene-0.13 and maker_Scaffold_615-augustus-gene-0.55)</p>
            <p>SUBSYSTEM: </p>
            <p>EC Number: </p>
            <p>Confidence Level: </p>
            <p>AUTHORS: </p>
            <p/>
          </body>
        </notes>
        <listOfReactants>
          <speciesReference species="M_fdxox_u" stoichiometry="2"/>
          <speciesReference species="M_pccu1p_u" stoichiometry="2"/>
          <speciesReference species="M_photon437_u" stoichiometry="2"/>
        </listOfReactants>
        <listOfProducts>
          <speciesReference species="M_fdxrd_u" stoichiometry="2"/>
          <speciesReference species="M_pccu2p_u" stoichiometry="2"/>
        </listOfProducts>
        <kineticLaw>
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <ci> FLUX_VALUE </ci>
          </math>
          <listOfParameters>
            <parameter id="LOWER_BOUND" value="0" units="mmol_per_gDW_per_hr" constant="false"/>
            <parameter id="UPPER_BOUND" value="1000" units="mmol_per_gDW_per_hr" constant="false"/>
            <parameter id="FLUX_VALUE" value="0" units="mmol_per_gDW_per_hr" constant="false"/>
            <parameter id="OBJECTIVE_COEFFICIENT" value="0" units="mmol_per_gDW_per_hr" constant="false"/>
          </listOfParameters>
        </kineticLaw>
      </reaction>

So to answer your question:

Disclaimer: I looked a few minutes at the model, no in depth analysis or simulation in any way. There could be much more to it. Spectra are discretized in the model (probably this corresponds to the peaks of the spectra). This discretization looks hand-tuned by the modeller so that light sources and consuming reactions work together.