Closed alihassanijr closed 2 years ago
> python3 natten/gradcheck.py
Verifying backward pass...
QK+RPB Gradients Ok
AV Gradients Ok
> python3 validate.py --model nat_base --pretrained ImageNet/ --amp
Validating in mixed precision with native PyTorch AMP.
Data processing configuration for current model + dataset:
input_size: (3, 224, 224)
interpolation: bicubic
mean: (0.485, 0.456, 0.406)
std: (0.229, 0.224, 0.225)
crop_pct: 0.875
WARNING: Unsupported operator aten::mul encountered 148 time(s)
WARNING: Unsupported operator aten::softmax encountered 30 time(s)
WARNING: Unsupported operator aten::add encountered 118 time(s)
WARNING: Unsupported operator aten::gelu encountered 30 time(s)
WARNING: Unsupported operator aten::rand encountered 58 time(s)
WARNING: Unsupported operator aten::floor_ encountered 58 time(s)
WARNING: Unsupported operator aten::div encountered 58 time(s)
WARNING: Unsupported operator aten::adaptive_avg_pool1d encountered 1 time(s)
Model nat_base created, 89.770M Params and 13.728GFLOPs
Test: [ 0/196] Time: 2.624s (2.624s, 97.55/s) Loss: 0.3684 (0.3684) Acc@1: 94.531 ( 94.531) Acc@5: 98.828 ( 98.828)
Test: [ 10/196] Time: 0.374s (0.599s, 427.65/s) Loss: 0.7993 (0.5135) Acc@1: 81.641 ( 89.134) Acc@5: 96.875 ( 98.438)
Test: [ 20/196] Time: 0.378s (0.499s, 512.84/s) Loss: 0.4612 (0.5249) Acc@1: 92.969 ( 88.895) Acc@5: 98.438 ( 98.289)
Test: [ 30/196] Time: 0.374s (0.460s, 556.96/s) Loss: 0.6294 (0.4928) Acc@1: 87.891 ( 89.869) Acc@5: 97.266 ( 98.374)
Test: [ 40/196] Time: 0.383s (0.439s, 582.62/s) Loss: 0.4846 (0.5322) Acc@1: 89.453 ( 88.729) Acc@5: 97.656 ( 98.104)
Test: [ 50/196] Time: 0.376s (0.427s, 599.58/s) Loss: 0.3374 (0.5330) Acc@1: 94.922 ( 88.603) Acc@5: 98.047 ( 98.108)
Test: [ 60/196] Time: 0.377s (0.419s, 611.52/s) Loss: 0.6553 (0.5505) Acc@1: 84.375 ( 88.140) Acc@5: 96.875 ( 98.079)
Test: [ 70/196] Time: 0.377s (0.413s, 620.45/s) Loss: 0.6382 (0.5395) Acc@1: 85.938 ( 88.281) Acc@5: 98.828 ( 98.195)
Test: [ 80/196] Time: 0.380s (0.408s, 627.45/s) Loss: 0.9580 (0.5570) Acc@1: 73.438 ( 87.871) Acc@5: 95.703 ( 98.042)
Test: [ 90/196] Time: 0.380s (0.404s, 632.91/s) Loss: 1.3174 (0.5819) Acc@1: 67.188 ( 87.139) Acc@5: 91.797 ( 97.785)
Test: [ 100/196] Time: 0.378s (0.402s, 637.40/s) Loss: 0.7969 (0.6144) Acc@1: 80.469 ( 86.313) Acc@5: 96.094 ( 97.478)
Test: [ 110/196] Time: 0.377s (0.399s, 641.17/s) Loss: 0.6367 (0.6257) Acc@1: 85.938 ( 85.987) Acc@5: 98.438 ( 97.410)
Test: [ 120/196] Time: 0.379s (0.397s, 644.33/s) Loss: 0.8379 (0.6304) Acc@1: 80.859 ( 85.886) Acc@5: 94.531 ( 97.333)
Test: [ 130/196] Time: 0.376s (0.396s, 647.13/s) Loss: 0.4229 (0.6473) Acc@1: 90.625 ( 85.287) Acc@5: 99.219 ( 97.188)
Test: [ 140/196] Time: 0.377s (0.394s, 649.30/s) Loss: 0.6094 (0.6538) Acc@1: 88.672 ( 85.131) Acc@5: 97.656 ( 97.144)
Test: [ 150/196] Time: 0.381s (0.393s, 651.36/s) Loss: 0.5747 (0.6605) Acc@1: 88.672 ( 84.993) Acc@5: 96.875 ( 97.072)
Test: [ 160/196] Time: 0.377s (0.392s, 653.18/s) Loss: 0.3867 (0.6670) Acc@1: 92.578 ( 84.841) Acc@5: 98.438 ( 96.962)
Test: [ 170/196] Time: 0.377s (0.391s, 654.73/s) Loss: 0.3965 (0.6762) Acc@1: 91.406 ( 84.539) Acc@5: 98.828 ( 96.870)
Test: [ 180/196] Time: 0.378s (0.390s, 656.10/s) Loss: 0.9956 (0.6861) Acc@1: 76.562 ( 84.267) Acc@5: 96.094 ( 96.828)
Test: [ 190/196] Time: 0.376s (0.389s, 657.43/s) Loss: 1.0391 (0.6890) Acc@1: 75.000 ( 84.207) Acc@5: 96.875 ( 96.832)
* Acc@1 84.254 (15.746) Acc@5 96.858 (3.142)
Passed!
> python3 natten/gradcheck.py
Verifying backward pass...
QK+RPB Gradients Ok
AV Gradients Ok
> ./dist_test.sh \
configs/nat/cascade_mask_rcnn_nat_base_3x_coco.py \
http://ix.cs.uoregon.edu/\~alih/nat/checkpoints/DET/nat_base_cascademaskrcnn.pth \
$NUM_GPUS \
--eval bbox segm
Evaluating bbox...
Loading and preparing results...
DONE (t=0.12s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=19.72s).
Accumulating evaluation results...
DONE (t=2.99s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.522
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.709
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.568
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.352
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.559
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.672
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.647
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.647
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.647
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.476
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.683
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.795
Loading and preparing results...
DONE (t=0.83s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=22.17s).
Accumulating evaluation results...
DONE (t=2.99s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.451
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.683
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.491
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.254
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.484
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.640
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.566
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.566
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.566
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.392
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.604
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.725
> python3 natten/gradcheck.py
Verifying backward pass...
QK+RPB Gradients Ok
AV Gradients Ok
> ./dist_test.sh \
configs/nat/upernet_nat_base_512x512_160k_ade20k.py \
http://ix.cs.uoregon.edu/\~alih/nat/checkpoints/SEG/nat_base_upernet.pth \
$NUM_GPUS \
--eval mIoU
+---------------------+-------+-------+
| Class | IoU | Acc |
+---------------------+-------+-------+
| wall | 75.53 | 87.16 |
| building | 81.87 | 92.29 |
| sky | 94.03 | 97.37 |
| floor | 80.33 | 90.81 |
| tree | 74.2 | 88.32 |
| ceiling | 82.15 | 90.36 |
| road | 82.84 | 90.57 |
| bed | 87.74 | 95.82 |
| windowpane | 60.96 | 76.56 |
| grass | 67.09 | 81.89 |
| cabinet | 61.49 | 76.18 |
| sidewalk | 67.19 | 81.96 |
| person | 79.83 | 92.83 |
| earth | 38.42 | 52.22 |
| door | 44.98 | 61.33 |
| table | 60.2 | 73.64 |
| mountain | 56.32 | 72.01 |
| plant | 50.81 | 63.63 |
| curtain | 69.39 | 84.6 |
| chair | 55.48 | 66.65 |
| car | 82.87 | 90.32 |
| water | 50.9 | 64.06 |
| painting | 70.19 | 87.05 |
| sofa | 67.36 | 83.98 |
| shelf | 41.04 | 58.61 |
| house | 43.24 | 52.96 |
| sea | 60.35 | 90.98 |
| mirror | 63.47 | 71.86 |
| rug | 57.3 | 63.43 |
| field | 29.64 | 47.03 |
| armchair | 42.7 | 61.84 |
| seat | 57.0 | 77.13 |
| fence | 40.73 | 55.21 |
| desk | 48.13 | 68.16 |
| rock | 41.16 | 63.11 |
| wardrobe | 51.11 | 67.45 |
| lamp | 61.11 | 73.86 |
| bathtub | 75.58 | 80.8 |
| railing | 35.51 | 47.36 |
| cushion | 58.02 | 69.98 |
| base | 29.12 | 37.3 |
| box | 24.72 | 31.98 |
| column | 44.52 | 56.47 |
| signboard | 36.14 | 54.87 |
| chest of drawers | 42.74 | 55.06 |
| counter | 27.87 | 34.73 |
| sand | 46.79 | 66.99 |
| sink | 72.58 | 79.75 |
| skyscraper | 51.11 | 62.53 |
| fireplace | 71.35 | 88.81 |
| refrigerator | 73.6 | 83.02 |
| grandstand | 39.79 | 62.46 |
| path | 18.91 | 25.99 |
| stairs | 30.03 | 35.55 |
| runway | 66.85 | 86.44 |
| case | 44.63 | 58.72 |
| pool table | 92.43 | 96.1 |
| pillow | 57.72 | 66.74 |
| screen door | 64.12 | 70.04 |
| stairway | 33.1 | 40.94 |
| river | 14.2 | 23.59 |
| bridge | 71.83 | 80.26 |
| bookcase | 40.3 | 59.67 |
| blind | 44.15 | 53.07 |
| coffee table | 57.86 | 82.82 |
| toilet | 85.69 | 91.19 |
| flower | 42.66 | 60.32 |
| book | 47.28 | 66.83 |
| hill | 6.35 | 8.63 |
| bench | 44.94 | 52.18 |
| countertop | 55.84 | 75.16 |
| stove | 75.39 | 82.15 |
| palm | 52.56 | 76.77 |
| kitchen island | 41.19 | 63.49 |
| computer | 63.74 | 75.12 |
| swivel chair | 47.24 | 66.98 |
| boat | 42.57 | 48.7 |
| bar | 28.3 | 39.14 |
| arcade machine | 50.75 | 53.53 |
| hovel | 53.32 | 62.04 |
| bus | 86.09 | 95.96 |
| towel | 60.64 | 74.56 |
| light | 56.48 | 64.49 |
| truck | 28.85 | 41.2 |
| tower | 12.96 | 20.85 |
| chandelier | 67.49 | 85.36 |
| awning | 26.03 | 32.65 |
| streetlight | 25.12 | 34.19 |
| booth | 47.54 | 49.03 |
| television receiver | 66.0 | 75.97 |
| airplane | 59.69 | 75.2 |
| dirt track | 4.58 | 15.82 |
| apparel | 32.95 | 48.14 |
| pole | 20.75 | 30.21 |
| land | 5.57 | 6.8 |
| bannister | 14.69 | 17.79 |
| escalator | 32.09 | 39.28 |
| ottoman | 46.33 | 57.33 |
| bottle | 36.13 | 63.37 |
| buffet | 45.26 | 51.34 |
| poster | 26.99 | 34.73 |
| stage | 19.62 | 27.18 |
| van | 44.84 | 60.52 |
| ship | 48.57 | 73.42 |
| fountain | 22.63 | 22.9 |
| conveyer belt | 66.7 | 84.57 |
| canopy | 18.26 | 24.12 |
| washer | 69.22 | 71.25 |
| plaything | 25.17 | 35.71 |
| swimming pool | 54.02 | 68.86 |
| stool | 44.41 | 61.67 |
| barrel | 57.82 | 66.71 |
| basket | 29.68 | 41.88 |
| waterfall | 44.44 | 51.48 |
| tent | 94.86 | 98.16 |
| bag | 18.95 | 24.15 |
| minibike | 73.53 | 85.26 |
| cradle | 79.39 | 94.99 |
| oven | 50.8 | 77.29 |
| ball | 50.8 | 61.8 |
| food | 57.46 | 68.13 |
| step | 13.11 | 15.34 |
| tank | 33.42 | 36.27 |
| trade name | 19.69 | 21.62 |
| microwave | 79.51 | 85.19 |
| pot | 40.92 | 48.68 |
| animal | 62.86 | 66.61 |
| bicycle | 53.48 | 76.9 |
| lake | 43.06 | 48.81 |
| dishwasher | 62.97 | 77.94 |
| screen | 64.13 | 86.63 |
| blanket | 12.65 | 15.11 |
| sculpture | 55.4 | 71.16 |
| hood | 56.1 | 61.26 |
| sconce | 44.63 | 54.54 |
| vase | 40.14 | 60.16 |
| traffic light | 31.21 | 48.37 |
| tray | 5.48 | 7.83 |
| ashcan | 40.68 | 59.46 |
| fan | 59.42 | 70.0 |
| pier | 36.14 | 49.78 |
| crt screen | 9.07 | 22.83 |
| plate | 50.39 | 68.97 |
| monitor | 13.44 | 17.81 |
| bulletin board | 47.89 | 68.15 |
| shower | 1.94 | 5.87 |
| radiator | 56.73 | 64.17 |
| glass | 14.15 | 15.59 |
| clock | 35.96 | 42.74 |
| flag | 39.61 | 43.14 |
+---------------------+-------+-------+
Summary:
+-------+-------+-------+
| aAcc | mIoU | mAcc |
+-------+-------+-------+
| 82.45 | 48.53 | 60.22 |
+-------+-------+-------+
All three tests passed, ready to merge into main
.
Refactoring
cuda
intonatten
causes a name collision onnatten.natten
, so we should refactor that as well.