Traceback (most recent call last):
File "source_train.py", line 315, in
main(parser.parse_args())
File "source_train.py", line 241, in main
rank_score = evaluator.evaluate(valloader, dataset.val, dataset.val)
File "/data0/network/SSG-master/SSG-master/reid/evaluators.py", line 190, in evaluate
features, = extract_features(self.model, data_loader, print_freq=self.print_freq)
File "/data0/network/SSG-master/SSG-master/reid/evaluators.py", line 28, in extract_features
outputs = extract_cnn_feature(model, imgs, for_eval)
File "/data0/network/SSG-master/SSG-master/reid/feature_extraction/cnn.py", line 16, in extract_cnn_feature
outputs = model(inputs, for_eval)[0]
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in call
result = self.forward(*input, kwargs)
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 143, in forward
outputs = self.parallel_apply(replicas, inputs, kwargs)
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 153, in parallel_apply
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/parallel/parallel_apply.py", line 83, in parallel_apply
raise output
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/parallel/parallel_apply.py", line 59, in _worker
output = module(*input, *kwargs)
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in call
result = self.forward(input, kwargs)
TypeError: forward() takes 2 positional arguments but 3 were given
Traceback (most recent call last): File "source_train.py", line 315, in
main(parser.parse_args())
File "source_train.py", line 241, in main
rank_score = evaluator.evaluate(valloader, dataset.val, dataset.val)
File "/data0/network/SSG-master/SSG-master/reid/evaluators.py", line 190, in evaluate
features, = extract_features(self.model, data_loader, print_freq=self.print_freq)
File "/data0/network/SSG-master/SSG-master/reid/evaluators.py", line 28, in extract_features
outputs = extract_cnn_feature(model, imgs, for_eval)
File "/data0/network/SSG-master/SSG-master/reid/feature_extraction/cnn.py", line 16, in extract_cnn_feature
outputs = model(inputs, for_eval)[0]
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in call
result = self.forward(*input, kwargs)
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 143, in forward
outputs = self.parallel_apply(replicas, inputs, kwargs)
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 153, in parallel_apply
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/parallel/parallel_apply.py", line 83, in parallel_apply
raise output
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/parallel/parallel_apply.py", line 59, in _worker
output = module(*input, *kwargs)
File "/home/dongwh/anaconda3/envs/SSG/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in call
result = self.forward(input, kwargs)
TypeError: forward() takes 2 positional arguments but 3 were given