SLU-TMI / TextMining.jl

Other
24 stars 7 forks source link

Print out the types in a clear, clean way #67

Closed Kevin-Damazyn closed 9 years ago

Kevin-Damazyn commented 9 years ago

Because

DataSet(["cl2"=>Cluster(["fv1"=>FeatureVector{ASCIIString,Int64}(["word1"=>8,"word2"=>6],undef),"fv3"=>FeatureVector{ASCIIString,Int64}(["word1"=>6,"word2"=>4],undef),"fv2"=>FeatureVector{ASCIIString,Int64}(["word1"=>2,"word2"=>12],undef)],FeatureVector{Any,Number}(["word1"=>16,"word2"=>22],undef),undef),"cl3"=>Cluster(Dict{Any,FeatureVector{K,V<:Number}}(),FeatureVector{Any,Number}(Dict{Any,Number}(),undef),undef),"cl1"=>Cluster(["fv1"=>FeatureVector{ASCIIString,Int64}(["word1"=>4,"word2"=>3],undef),"fv3"=>FeatureVector{ASCIIString,Int64}(["word1"=>3,"word2"=>2],undef),"fv2"=>FeatureVector{ASCIIString,Int64}(["word1"=>1,"word2"=>6],undef)],FeatureVector{Any,Number}(["word1"=>8,"word2"=>11],undef),undef)],FeatureVector{Any,Number}(["word1"=>24,"word2"=>33],undef),undef)

is ridiculous.

Kevin-Damazyn commented 9 years ago

68

chucklesoclock commented 9 years ago

You're ridiculous