Open stefangachter opened 3 years ago
To help us understand what happens, can you try to do a permutation of the stochastic processes when you define the model? e.g., change model = WN() + MA1()
to model = MA(1) + WN()
.
Does the issue persist?
Following example:
> n = 10^4
> model = MA1(theta = .98, sigma2 = .02) + WN(sigma2 = 1)
> Xt = gen_gts(n = n, model = model)
> rank_models(MA1()+WN(), data = Xt, nested = TRUE, model.type = "ts")
Processing model 1 out of 3
**error: Mat::operator(): index out of bounds**
rank_models(MA1() + WN(), data = Xt, nested = TRUE, model.type = "ts") でエラー:
Mat::operator(): index out of bounds
> rank_models(MA1(theta = .98, sigma2 = .02)+WN(sigma2 = 1), data = Xt, nested = TRUE, model.type = "ts")
Processing model 1 out of 3
**error: Mat::operator(): index out of bounds**
rank_models(MA1(theta = 0.98, sigma2 = 0.02) + WN(sigma2 = 1), でエラー:
Mat::operator(): index out of bounds
> rank_models(WN()+MA1(), data = Xt, nested = TRUE, model.type = "ts")
Processing model 1 out of 3
**error: Col::rows(): indices out of bounds or incorrectly used**
rank_models(WN() + MA1(), data = Xt, nested = TRUE, model.type = "ts") でエラー:
Col::rows(): indices out of bounds or incorrectly used
> rank_models(AR1()+WN(), data = Xt, nested = TRUE, model.type = "ts")
Processing model 1 out of 3
Bootstrapping the covariance matrix... Please stand by.
Processing model 2 out of 3
Processing model 3 out of 3
The model ranking is given as:
Obj Fun Optimism Criterion GoF P-Value
1. AR1 0.0284 0.3796 0.4079 0.9078
2. AR1 WN 0.4010 0.3365 0.7376 0.1054
3. WN 0.4006 0.4102 0.8108 0.1857
>
shows that error occurs independent of permutation or initial values available or not.
The moving average model needs initial values. Otherwise, following error occurs:
error: Mat::operator(): index out of bounds
However, forauto_imu
initial values seem not to be considered. The above error occurs in any case.