Open JerkyT opened 2 years ago
Hi @JerkyT, could you please tell me what is the classification result you get from PointNet++ using our dataset
Thanks for your reply@SMohammadi89, I followed the tips and do:
cd Feature_extraction
python main.py
the pointnet++ model file is:pointnet2_cls.py and the ccheckpoint is pointnet_on_single_view.pth and the output result like this:
[1. 0.88988095 0.96775794 0.76201923 0.92509921 0.97271825 0.9525 0.99900794 0.97172619 0.91666667 0.7225 0.92 0.82349537 0.92548077 0.89351852 0.18 0.94451531 0.99950397 0.99759615 0.86057692 0.98317308 0.94146825 0.98214286 0.66724537 0.90885417 0.955 0.90396341 0.78 0.9265 0.81 0.939 0.9075 0.855 0.7755 0.9125 0.985 0.888 0.817 0.54 0.72395833] test Instance Accuracy: 0.904210, Class Accuracy: 0.870659
Hellow, the other question : i want to use your code. but~ I compared your dataset with the dataset from the ModelNet40 official website and found that these samples are missing
**Test** : [glass_box_0219, glass_box_0221, glass_box_0241, glass_box_0213, glass_box_0211, glass_box_0242, xbox_0123, glass_box_0229, piano_0232, plant_0276, glass_box_0208, glass_box_0260, glass_box_0249, glass_box_0185, glass_box_0245, glass_box_0256, glass_box_0232, glass_box_0253, person_0093, glass_box_0254, plant_0265, glass_box_0239, bowl_0078, glass_box_0255, glass_box_0193, glass_box_0216, glass_box_0248, cone_0179, glass_box_0215]
**Train** : [chair_0263, chair_0381, chair_0486, chair_0274, vase_0451, vase_0350, chair_0466, vase_0352, chair_0519, vase_0315, chair_0288, chair_0549, chair_0124, chair_0354, vase_0470, chair_0529, chair_0498, chair_0302, chair_0481, chair_0210, vase_0449, chair_0583, tent_0145, chair_0126, chair_0327, vase_0408, chair_0389, chair_0258, vase_0394, vase_0319, tent_0142, chair_0567, chair_0242, tent_0150, chair_0181, chair_0341, curtain_0054, person_0026, chair_0372, person_0058, chair_0226, vase_0457, chair_0262, tent_0144, chair_0767, vase_0423, chair_0577, chair_0589, vase_0337, plant_0078, chair_0415, chair_0290, vase_0365, chair_0272, chair_0127, chair_0277, chair_0248, vase_0371, vase_0471, chair_0798, chair_0584, chair_0499, chair_0405, vase_0344, chair_0536, vase_0441, door_0059, chair_0207, vase_0395, chair_0357, tent_0152, chair_0517, chair_0287, vase_0348, chair_0491, chair_0301, chair_0476, chair_0522, chair_0257, vase_0469, vase_0430, vase_0374, chair_0401, chair_0311, chair_0241, chair_0495, tent_0137, chair_0494, chair_0533, chair_0304, table_0361, vase_0364, chair_0581, vase_0434, chair_0504, chair_0452, chair_0370, chair_0550, chair_0587, chair_0265, chair_0358, chair_0280, vase_0393, chair_0292, chair_0228, chair_0547, chair_0794, chair_0376, chair_0410, tent_0139, chair_0220, chair_0490, vase_0391, chair_0791, chair_0371, bowl_0018, chair_0386, vase_0421, vase_0397, chair_0424, chair_0451, chair_0230, chair_0279, chair_0326, vase_0376, chair_0445, tent_0154, chair_0485, chair_0478, vase_0379, chair_0316, chair_0377, chair_0576, chair_0348, chair_0261, chair_0477, vase_0454, chair_0221, chair_0444, chair_0488, vase_0324, tent_0128, chair_0470, chair_0456, chair_0426, chair_0578, chair_0764, tent_0146, tent_0147, chair_0417, vase_0405, chair_0323, chair_0252, chair_0409, chair_0342, chair_0436, chair_0309, chair_0535, vase_0373, chair_0413, chair_0460, chair_0307, tent_0153, vase_0342, chair_0240, vase_0346, vase_0398, chair_0559, tent_0148, vase_0329, chair_0373, vase_0308, chair_0483, chair_0202, vase_0437, chair_0449, chair_0790, chair_0439, chair_0551, chair_0471, tent_0160, vase_0355, tent_0134, chair_0298, chair_0448, vase_0356, chair_0201, chair_0229, vase_0388, chair_0122, chair_0442, vase_0323, vase_0425, vase_0432, chair_0332, tent_0143, chair_0762, vase_0340, chair_0482, vase_0307, chair_0546, chair_0575, chair_0268, tent_0136, chair_0222, vase_0334, chair_0554, vase_0328, vase_0445, vase_0331, chair_0515, chair_0355, chair_0123, chair_0763, chair_0416, chair_0333, chair_0337, person_0015, vase_0385, chair_0227, chair_0570, vase_0453, vase_0409, chair_0434, chair_0188, cone_0008, chair_0421, chair_0541, vase_0357, vase_0313, vase_0305, chair_0792, chair_0289, vase_0380, chair_0187, chair_0349, vase_0462, vase_0360, chair_0503, tent_0159, vase_0389, chair_0530, chair_0374, vase_0375, tent_0119, chair_0294, chair_0509, chair_0524, chair_0266, chair_0766, vase_0383, chair_0256, tent_0161, chair_0340, vase_0400, chair_0545, chair_0236, vase_0407, chair_0233, chair_0548, chair_0244, vase_0417, chair_0350, chair_0331, vase_0403, chair_0351, chair_0245, chair_0474, chair_0308, chair_0518, vase_0381, vase_0456, chair_0453, vase_0306, vase_0411, person_0029, chair_0428, chair_0543, chair_0213, chair_0412, chair_0324, chair_0432, chair_0507, chair_0203, chair_0497, chair_0555, vase_0372, vase_0318, tent_0122, chair_0359, chair_0429, vase_0433, chair_0275, plant_0232, vase_0382, chair_0560, chair_0473, chair_0364, vase_0359, chair_0500, chair_0335, chair_0312, vase_0467, vase_0444, tent_0126, chair_0588, vase_0330, chair_0534, chair_0461, chair_0458, chair_0512, chair_0214, chair_0516, vase_0466, tent_0131, vase_0414, chair_0356, vase_0436, vase_0341, chair_0387, chair_0539, chair_0418, chair_0480, chair_0299, chair_0129, chair_0441, chair_0388, tent_0156, chair_0260, vase_0343, chair_0330, vase_0410, vase_0463, vase_0387, vase_0452, tent_0138, chair_0375, chair_0457, chair_0247, chair_0385, chair_0334, chair_0232, chair_0254, chair_0271, chair_0572, chair_0329, tv_stand_0114, tent_0162, vase_0442, chair_0310, chair_0586, vase_0338, vase_0464, vase_0325, chair_0492, tent_0125, chair_0208, chair_0246, vase_0473, chair_0561, tent_0120, tent_0133, chair_0425, vase_0327, vase_0448, chair_0769, chair_0328, chair_0259, chair_0297, vase_0415, vase_0420, vase_0321, chair_0215, vase_0422, chair_0472, chair_0128, chair_0438, chair_0206, tent_0124, chair_0205, vase_0458, chair_0564, chair_0520, chair_0338, chair_0423, tent_0121, chair_0795, vase_0419, chair_0513, chair_0435, chair_0562, chair_0566, chair_0283, stairs_0113, chair_0563, chair_0380, chair_0493, chair_0296, chair_0366, chair_0404, chair_0273, chair_0382, chair_0384, tent_0123, chair_0237, chair_0343, vase_0472, chair_0443, vase_0358, chair_0120, chair_0185, chair_0469, vase_0455, vase_0401, chair_0270, chair_0542, chair_0765, vase_0335, chair_0484, chair_0182, chair_0285, vase_0446, chair_0346, vase_0309, tent_0158, chair_0305, tent_0129, vase_0378, cone_0141, person_0051, chair_0556, chair_0573, vase_0349, chair_0574, chair_0315, chair_0420, chair_0235, chair_0383, chair_0318, chair_0223, chair_0532, vase_0326, vase_0351, chair_0544, person_0060, chair_0799, chair_0336, chair_0797, chair_0269, vase_0427, vase_0404, vase_0362, chair_0368, vase_0312, chair_0508, vase_0339, chair_0454, chair_0284, chair_0440, chair_0407, chair_0267, chair_0306, chair_0321, chair_0455, chair_0402, chair_0303, chair_0378, chair_0217, chair_0278, chair_0552, chair_0231, vase_0333, chair_0282, chair_0475, chair_0362, vase_0406, plant_0044, vase_0361, chair_0365, chair_0526, chair_0411, vase_0384, chair_0568, chair_0437, chair_0281, chair_0183, chair_0317, chair_0325, chair_0379, chair_0459, chair_0414, chair_0489, vase_0320, cone_0034, vase_0368, chair_0447, chair_0796, vase_0390, chair_0360, chair_0253, chair_0430, chair_0200, chair_0293, vase_0310, chair_0363, cone_0111, chair_0347, chair_0537, chair_0521, chair_0419, vase_0465, tent_0135, tent_0157, vase_0461, chair_0580, chair_0322, chair_0528, vase_0468, vase_0424, chair_0450, tent_0127, chair_0300, chair_0189, chair_0501, chair_0345, chair_0180, chair_0571, chair_0224, laptop_0140, chair_0234, chair_0502, vase_0475, vase_0474, chair_0204, vase_0316, tent_0130, vase_0428, chair_0339, vase_0322, chair_0406, vase_0347, chair_0585, chair_0184, chair_0467, vase_0311, tent_0132, chair_0255, vase_0412, tent_0163, vase_0426, vase_0377, vase_0396, chair_0446, vase_0336, person_0016, chair_0538, chair_0403, vase_0369, vase_0450, vase_0353, chair_0760, chair_0209, chair_0400, chair_0361, vase_0370, chair_0464, vase_0314, chair_0433, chair_0367, chair_0540, chair_0565, chair_0422, vase_0439, chair_0505, chair_0427, chair_0468, vase_0413, vase_0392, chair_0251, chair_0768, chair_0320, vase_0402, vase_0332, vase_0418, chair_0511, chair_0579, chair_0243, vase_0447, vase_0460, chair_0218, chair_0496, chair_0225, chair_0582, chair_0219, chair_0125, chair_0558, vase_0386, chair_0264, vase_0317, chair_0465, vase_0363, chair_0286, vase_0416, vase_0459, chair_0291, vase_0438, chair_0462, vase_0367, chair_0569, vase_0443, chair_0239, chair_0313, chair_0557, chair_0352, chair_0514, vase_0304, chair_0463, vase_0435, chair_0761, vase_0366, vase_0440, tent_0141, chair_0523, tent_0140, chair_0121, vase_0345, chair_0344, tent_0149, keyboard_0088, chair_0793, chair_0216, vase_0429, chair_0553, chair_0479, chair_0276, curtain_0124, chair_0211, person_0044, chair_0186, chair_0510, chair_0408, chair_0212, chair_0369, chair_0487, chair_0525, chair_0431, chair_0238, chair_0506, chair_0249, vase_0431, vase_0399, chair_0531, chair_0314, chair_0250, chair_0353, chair_0295, tent_0151, chair_0527, chair_0319]
i try to run :
cd Dataset_rendering
python dataset_capturing.py --out-split-dir /train/ && python dataset_capturing.py --out-split-dir /test/
But it looks like I don't have the *'.ply'** file Could you please upload the full dataset?thank you very much!
Hi, I was wondering what you did with the scanobjectnn dataset and the two different view configurations of 12 and 20 with the modelnet40 dataset?
Hello,Thanks for your code, but i have some question:
The link from project has missing data : single-view PCD i have same question with https://github.com/SMohammadi89/PointView-GCN/issues/2 I run the PointView-GCN with PointNet++ on ModelNet40, the classification result is only 92.8%