Closed taless474 closed 4 years ago
In NumPy having an empty axis is not the same as not having an axis:
np.all([-1, 0, 1], axis=()) # array([ True, False, True]) np.any([-1, 0, 1], axis=()) # array([ True, False, True]) np.max([-1, 0, 1], axis=()) # array([-1, 0, 1]) np.min([-1, 0, 1], axis=(), initial=0) # array([-1, 0, 0]) np.mean([-1, 0, 1], axis=()) # array([-1., 0., 1.]) np.prod([-1, 0, 1], axis=()) # array([-1, 0, 1]) np.std([-1, 0, 1], axis=()) # array([0., 0., 0.]) np.var([-1, 0, 1], axis=()) # array([0., 0., 0.]) np.sum([-1, 0, 1], axis=()) # array([-1, 0, 1])
This PR modifies statistic base to comply with the mentioned feature.
@taless474 could you please rebase this on master to fix the build system issues?
In NumPy having an empty axis is not the same as not having an axis:
This PR modifies statistic base to comply with the mentioned feature.