SaudAltamimi / value-mpt

MIT License
2 stars 3 forks source link

Develop the tools needed for different agents #11

Open SaudAltamimi opened 3 months ago

SaudAltamimi commented 3 months ago

A skeleton code for the tools that the agents will utilize to achieve their goals:

from langchain.tools import BaseTool
from langchain.pydantic_v1 import BaseModel, Field
from typing import Optional, List, Dict
import yfinance as yf
import pandas as pd
import numpy as np
from scipy.optimize import minimize

class StockData(BaseModel):
    symbol: str = Field(..., description="Stock ticker symbol")
    start_date: str = Field(..., description="Start date for historical data (YYYY-MM-DD)")
    end_date: str = Field(..., description="End date for historical data (YYYY-MM-DD)")

class PortfolioData(BaseModel):
    stocks: List[str] = Field(..., description="List of stock ticker symbols")
    weights: List[float] = Field(..., description="List of portfolio weights")

class FundamentalAnalysisTool(BaseTool):
    name = "fundamental_analysis"
    description = "Analyzes fundamental data for a given stock"
    args_schema = StockData

    def _run(self, symbol: str, start_date: str, end_date: str) -> Dict:
        stock = yf.Ticker(symbol)
        info = stock.info
        financials = stock.financials

        # Calculate key ratios
        pe_ratio = info.get('trailingPE', None)
        pb_ratio = info.get('priceToBook', None)
        debt_to_equity = info.get('debtToEquity', None)
        roe = info.get('returnOnEquity', None)

        return {
            "symbol": symbol,
            "pe_ratio": pe_ratio,
            "pb_ratio": pb_ratio,
            "debt_to_equity": debt_to_equity,
            "roe": roe,
            # Add more fundamental metrics as needed
        }

class MPTOptimizationTool(BaseTool):
    name = "mpt_optimization"
    description = "Optimizes portfolio using Modern Portfolio Theory"
    args_schema = PortfolioData

    def _run(self, stocks: List[str], weights: List[float]) -> Dict:
        # Fetch historical data
        data = yf.download(stocks, start="2020-01-01")['Adj Close']

        # Calculate returns
        returns = data.pct_change().dropna()

        # Calculate expected returns and covariance
        expected_returns = returns.mean()
        cov_matrix = returns.cov()

        # Perform portfolio optimization (this is a simplified version)
        def portfolio_volatility(weights, cov_matrix):
            return np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))

        def objective(weights, cov_matrix):
            return portfolio_volatility(weights, cov_matrix)

        constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
        bounds = tuple((0, 1) for _ in range(len(stocks)))

        result = minimize(objective, weights, args=(cov_matrix,), method='SLSQP', bounds=bounds, constraints=constraints)

        optimized_weights = result.x
        expected_return = np.sum(expected_returns * optimized_weights)
        expected_volatility = portfolio_volatility(optimized_weights, cov_matrix)

        return {
            "optimized_weights": optimized_weights.tolist(),
            "expected_return": expected_return,
            "expected_volatility": expected_volatility
        }

class RiskManagementTool(BaseTool):
    name = "risk_management"
    description = "Assesses portfolio risk"
    args_schema = PortfolioData

    def _run(self, stocks: List[str], weights: List[float]) -> Dict:
        # Fetch historical data
        data = yf.download(stocks, start="2020-01-01")['Adj Close']
        returns = data.pct_change().dropna()

        # Calculate portfolio return and volatility
        portfolio_return = np.sum(returns.mean() * weights) * 252  # Annualized
        portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(returns.cov() * 252, weights)))

        # Calculate Value at Risk (VaR)
        var_95 = np.percentile(np.sum(returns * weights, axis=1), 5)

        return {
            "portfolio_return": portfolio_return,
            "portfolio_volatility": portfolio_volatility,
            "var_95": var_95
        }

class MarginOfSafetyTool(BaseTool):
    name = "margin_of_safety"
    description = "Calculates margin of safety for a stock"
    args_schema = StockData

    def _run(self, symbol: str, start_date: str, end_date: str) -> Dict:
        stock = yf.Ticker(symbol)
        info = stock.info

        # This is a simplified calculation and should be more comprehensive in practice
        book_value_per_share = info.get('bookValue', 0)
        current_price = info.get('currentPrice', 0)

        if book_value_per_share > 0 and current_price > 0:
            margin_of_safety = (book_value_per_share - current_price) / book_value_per_share
        else:
            margin_of_safety = None

        return {
            "symbol": symbol,
            "book_value_per_share": book_value_per_share,
            "current_price": current_price,
            "margin_of_safety": margin_of_safety
        }

class MarketSentimentTool(BaseTool):
    name = "market_sentiment"
    description = "Analyzes market sentiment"
    args_schema = StockData

    def _run(self, symbol: str, start_date: str, end_date: str) -> Dict:
        # This is a placeholder. In a real implementation, you would integrate
        # with sentiment analysis APIs or use NLP models on news and social media data.
        return {
            "symbol": symbol,
            "sentiment_score": 0.5,  # Placeholder score
            "sentiment": "Neutral"  # Placeholder sentiment
        }

# Create instances of the tools
fundamental_analysis_tool = FundamentalAnalysisTool()
mpt_optimization_tool = MPTOptimizationTool()
risk_management_tool = RiskManagementTool()
margin_of_safety_tool = MarginOfSafetyTool()
market_sentiment_tool = MarketSentimentTool()

# List of all tools
tools = [
    fundamental_analysis_tool,
    mpt_optimization_tool,
    risk_management_tool,
    margin_of_safety_tool,
    market_sentiment_tool
]

# Example usage
if __name__ == "__main__":
    # Fundamental Analysis
    fa_result = fundamental_analysis_tool.run({"symbol": "AAPL", "start_date": "2023-01-01", "end_date": "2023-12-31"})
    print("Fundamental Analysis Result:", fa_result)

    # MPT Optimization
    mpt_result = mpt_optimization_tool.run({"stocks": ["AAPL", "GOOGL", "MSFT"], "weights": [0.33, 0.33, 0.34]})
    print("MPT Optimization Result:", mpt_result)

    # Risk Management
    risk_result = risk_management_tool.run({"stocks": ["AAPL", "GOOGL", "MSFT"], "weights": [0.33, 0.33, 0.34]})
    print("Risk Management Result:", risk_result)

    # Margin of Safety
    mos_result = margin_of_safety_tool.run({"symbol": "AAPL", "start_date": "2023-01-01", "end_date": "2023-12-31"})
    print("Margin of Safety Result:", mos_result)

    # Market Sentiment
    sentiment_result = market_sentiment_tool.run({"symbol": "AAPL", "start_date": "2023-01-01", "end_date": "2023-12-31"})
    print("Market Sentiment Result:", sentiment_result)