ScalingIntelligence / large_language_monkeys

Other
54 stars 9 forks source link

`yaml.scanner.ScannerError` from Evaluating Pythia 1B on MATH #2

Open RylanSchaeffer opened 1 month ago

RylanSchaeffer commented 1 month ago
  File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/submodules/large_language_monkeys/llmonk/evaluate/ma
th_datasets.py", line 74, in process_sample                                                                                                
    result = load_yaml(config.sample_path)                                                                                                 
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^                                                                                                 
  File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/submodules/large_language_monkeys/llmonk/utils.py", 
line 9, in load_yaml                                                                                                                       
    data = yaml.load(f, Loader=yaml.CLoader)                                                                                               
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^                                                                                               
  File "/lfs/skampere1/0/rschaef/miniconda3/envs/llmonk/lib/python3.11/site-packages/yaml/__init__.py", line 81, in load                   
    return loader.get_single_data()                                                                                                        
           ^^^^^^^^^^^^^^^^^^^^^^^^                                                                                                        
  File "/lfs/skampere1/0/rschaef/miniconda3/envs/llmonk/lib/python3.11/site-packages/yaml/constructor.py", line 49, in get_single_data     
    node = self.get_single_node()                                                                                                          
           ^^^^^^^^^^^^^^^^^^^^^^                                                                                                          
  File "yaml/_yaml.pyx", line 673, in yaml._yaml.CParser.get_single_node                                                                   
  File "yaml/_yaml.pyx", line 687, in yaml._yaml.CParser._compose_document                                                                 
  File "yaml/_yaml.pyx", line 731, in yaml._yaml.CParser._compose_node                                                                     
  File "yaml/_yaml.pyx", line 845, in yaml._yaml.CParser._compose_mapping_node                                                             
  File "yaml/_yaml.pyx", line 729, in yaml._yaml.CParser._compose_node                                                                     
  File "yaml/_yaml.pyx", line 808, in yaml._yaml.CParser._compose_sequence_node                                                            
  File "yaml/_yaml.pyx", line 860, in yaml._yaml.CParser._parse_next_event                                                                 
yaml.scanner.ScannerError: while scanning a simple key                                                                                     
  in "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/eval_results/math_samples/Pythia_1B_300B/152.yaml", li
ne 114, column 1                                                                                                                           
could not find expected ':'
  in "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/eval_results/math_samples/Pythia_1B_300B/152.yaml", line 119, column 15
"""
RylanSchaeffer commented 1 month ago

The file eval_results/math_samples/Pythia_1B_300B/152.yaml:

gt_answer: For all $n$, $1 + 2 + \dots + n = n(n + 1)/2$, so $1+2+3+\dots+80=\frac{80
  \cdot 81}{2}=40\cdot81=2^3\cdot5\cdot3^4$. Thus, the greatest prime factor of the
  sum is $\boxed{5}$.
prompt: 'Problem:

  Find the domain of the expression  $\frac{\sqrt{x-2}}{\sqrt{5-x}}$.}

  Solution:

  The expressions inside each square root must be non-negative. Therefore, $x-2 \ge
  0$, so $x\ge2$, and $5 - x \ge 0$, so $x \le 5$. Also, the denominator cannot be
  equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of the expression
  is $\boxed{[2,5)}$.

  Final Answer: The final answer is $[2,5)$. I hope it is correct.

  Problem:

  If $\det \mathbf{A} = 2$ and $\det \mathbf{B} = 12,$ then find $\det (\mathbf{A}
  \mathbf{B}).$

  Solution:

  We have that $\det (\mathbf{A} \mathbf{B}) = (\det \mathbf{A})(\det \mathbf{B})
  = (2)(12) = \boxed{24}.$

  Final Answer: The final answer is $24$. I hope it is correct.

  Problem:

  Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights
  instead, how many times must Terrell lift them in order to lift the same total weight?

  Solution:

  If Terrell lifts two 20-pound weights 12 times, he lifts a total of $2\cdot 12\cdot20=480$
  pounds of weight.  If he lifts two 15-pound weights instead for $n$ times, he will
  lift a total of $2\cdot15\cdot n=30n$ pounds of weight.  Equating this to 480 pounds,
  we can solve for $n$:

  \begin{align*}

  30n&=480\

  \Rightarrow\qquad n&=480/30=\boxed{16}

  \end{align*}

  Final Answer: The final answer is $16$. I hope it is correct.

  Problem:

  If the system of equations

  \begin{align*}

  6x-4y&=a,\

  6y-9x &=b.

  \end{align*}has a solution $(x, y)$ where $x$ and $y$ are both nonzero,

  find $\frac{a}{b},$ assuming $b$ is nonzero.

  Solution:

  If we multiply the first equation by $-\frac{3}{2}$, we obtain

  $$6y-9x=-\frac{3}{2}a.$$Since we also know that $6y-9x=b$, we have

  $$-\frac{3}{2}a=b\Rightarrow\frac{a}{b}=\boxed{-\frac{2}{3}}.$$

  Final Answer: The final answer is $-\frac{2}{3}$. I hope it is correct.

  Problem:

  What is the greatest prime factor of the sum of the arithmetic sequence $1 + 2 +
  3 + \cdots + 80$?

  Solution:'
question: What is the greatest prime factor of the sum of the arithmetic sequence
  $1 + 2 + 3 + \cdots + 80$?
samples:
- '

  We know that $1 + 2 + 3 + \cdots + 80 = \frac{1}{2}(1 + 2 + 3 + \cdots + 80) = \boxed{2^{80}}$.

  Final Answer: The final answer is $2^{80}$. I hope it is correct.

  '
- '

  The sum of the sequence $1 + 2 + 3 + \cdots + 80$ is

  $$\sum_{n=1}^{80}n=\boxed{8192}.$$

  The greatest prime factor of $8192$ is $2$.

  '
$p=3$, we have $p=5$, so $p=5$.  If $p=5$,
  we have $p=7$, so $p=7$.  Therefore, the greatest prime factor of $p-1$ is $p-1=2$.  Thus,
  $p=2$ is the greatest prime factor of the sum.  Therefore, the greatest prime factor
  of the sum is $p=2$.

  Final Answer: The final answer is $2$. I hope it is correct.

  '