Closed earsonlau closed 2 years ago
By the way, I try to use ade20k to test the model, using upernet_global_small.pth (https://drive.google.com/file/d/13hOneJiFqwEneUz1Zpqo1W2uv7BsoXGF). But see this error:
2022-03-14 20:48:19,772 - mmseg - INFO - Loaded 2000 images
Use Checkpoint: True
Checkpoint Number: [0, 0, 2, 0]
Use global window for all blocks in stage3
Use load_from_local loader
Traceback (most recent call last):
File "tools/test.py", line 157, in <module>
main()
File "tools/test.py", line 125, in main
model.CLASSES = checkpoint['meta']['CLASSES']
KeyError: 'meta'
the cmd I use :
python tools/test.py '.../exp/upernet_global_small/test_config_g.py' '.../semantic_segmentation/ckpt/upernet_global_small.pth' --show-dir ./output.pn
For EncoderDecoder: 'UniFormer is not in the models registry
, maybe you do not import the model correctly. You have to import the model in __init__.py
.
For KeyError: 'meta'
, it is my mistask to only save the model weights, since I think the meta
can be obtained from the dataset. For fix such bug, you can set the meta
manually.
The followed message can easily generated when training model on ADE.
checkpoint['meta']['CLASSES'] = (
'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ',
'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth',
'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car', 'water',
'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug', 'field',
'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp',
'bathtub', 'railing', 'cushion', 'base', 'box', 'column', 'signboard',
'chest of drawers', 'counter', 'sand', 'sink', 'skyscraper', 'fireplace',
'refrigerator', 'grandstand', 'path', 'stairs', 'runway', 'case', 'pool table',
'pillow', 'screen door', 'stairway', 'river', 'bridge', 'bookcase', 'blind',
'coffee table', 'toilet', 'flower', 'book', 'hill', 'bench', 'countertop',
'stove', 'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar',
'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower', 'chandelier',
'awning', 'streetlight', 'booth', 'television receiver', 'airplane', 'dirt track',
'apparel', 'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle', 'buffet',
'poster', 'stage', 'van', 'ship', 'fountain', 'conveyer belt', 'canopy', 'washer',
'plaything', 'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent',
'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank', 'trade name',
'microwave', 'pot', 'animal', 'bicycle', 'lake', 'dishwasher', 'screen', 'blanket',
'sculpture', 'hood', 'sconce', 'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier',
'crt screen', 'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass', 'clock', 'flag'
)
checkpoint['meta']['PALETTE'] = [
[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80],
[140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4],
[255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255],
[8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20],
[255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0],
[153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133],
[255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153],
[255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194],
[0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255],
[163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255],
[112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255],
[255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0],
[173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]
]
@earsonlau By the way, I have updated the pre-trained weights and save the meta
, you can simply download the new model to fix this bug.
Thank you very much!
By default I gotta download ADEChallengeData2016 for testing the pre-trained model. Is there a easier way without set up a dataset, just use one image like the demo/inference_demo.ipynb do? when I use the inference_demo and the keyError is ""EncoderDecoder: 'UniFormer is not in the models registry'""