ShannonAI / dice_loss_for_NLP

The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`
Apache License 2.0
273 stars 39 forks source link

zh_onto4数据集结果复现问题 #22

Open 18682922316 opened 2 years ago

18682922316 commented 2 years ago

你好,我们在复现命名实体识别数据集zh_onto4结果时,按照readme的指导,运行的是scripts/ner_zhonto4/bert_dice.sh. 脚本,脚本超参没有修改过,但测试集 spanF1的分数只有80.80,与文章中的84.47的结果差距较大,运行日志和测试结果见下文,麻烦看一下是哪个地方的问题,多谢!

h-4.3$sh scripts/ner_zhonto4/bert_dice.sh DEBUG INFO -> loss sign is dice_1_0.3_0.01 DEBUG INFO -> save hyperparameters DEBUG INFO -> pred_answerable train_infer DEBUG INFO -> check bert_config BertForQueryNERConfig { "activate_func": "relu", "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "construct_entity_span": "start_and_end", "directionality": "bidi", "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "id2label": { "0": "LABEL_0" }, "initializer_range": 0.02, "intermediate_size": 3072, "label2id": { "LABEL_0": 0 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "pred_answerable": true, "truncated_normal": false, "type_vocab_size": 2, "vocab_size": 21128 }

Some weights of the model checkpoint at /home/ma-user/work/bert-base-chinese were not used when initializing BertForQueryNER: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias']

kk19990709 commented 2 years ago

我也遇到了相同的问题,结果是80.78

kk19990709 commented 2 years ago

时隔两个月,我又复现了一遍,还是只有80.xx%