ShannonAI / mrc-for-flat-nested-ner

Code for ACL 2020 paper `A Unified MRC Framework for Named Entity Recognition`
662 stars 118 forks source link

train problem 卡在以下最后一行内容current training loss is : 0.01826123334467411 不动 #110

Open gjy-code opened 2 years ago

gjy-code commented 2 years ago

train_zh_onto.sh: line 7: EXP-ID=22_1: command not found Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex. Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex. Please notice that merge the args_dict and json_config ... ... { "bert_frozen": "false", "hidden_size": 768, "hidden_dropout_prob": 0.2, "classifier_sign": "multi_nonlinear", "clip_grad": 1, "bert_config": { "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 21128 }, "config_path": "/home/amax/work/gjy/mrcc/config/zh_bert.json", "data_dir": "/home/amax/work/gjy/mrcc/data_preprocess/example/zh_ontonotes4", "bert_model": "/home/amax/work/gjy/Bert-Ner-Demo-master/chinese_L-12_H-768_A-12", "task_name": null, "max_seq_length": 100, "train_batch_size": 16, "dev_batch_size": 16, "test_batch_size": 16, "checkpoint": 600, "learning_rate": 8e-06, "num_train_epochs": 10, "warmup_proportion": -1.0, "local_rank": -1, "gradient_accumulation_steps": 1, "seed": 2333, "export_model": true, "output_dir": "/home/amax/work/gjy/mrcc/export/zh_onto/mrc-ner-zh_onto-2020-05-12--100-8e-6-16-0.3", "data_sign": "zh_onto", "weight_start": 1.0, "weight_end": 1.0, "weight_span": 1.0, "entity_sign": "flat", "n_gpu": 1, "dropout": 0.3, "entity_threshold": 0.5, "data_cache": true } -------------------- current data_sign: zh_onto ==================== loading train data ... ... 62896 62896 train data loaded ==================== loading dev data ... ... 17204 17204 dev data loaded ==================== loading test data ... ... 17384 17384 test data loaded 数据已加载完毕! load_model模型已加载完毕! ###################################################################### EPOCH: 0 -----------------------------*- current training loss is : 0.01826123334467411