Simon4Yan / Meta-set

Automatic model evaluation (AutoEval) in CVPR'21&TPAMI'22
MIT License
36 stars 5 forks source link

COCO Setup #2

Open Simon4Yan opened 2 years ago

Simon4Yan commented 2 years ago

Thank you for your attention!

Please download the datasets for coco classification setup in here.

The zip file contains two parts. The first part is coco datasets: 1) a training set, 2) a validation set, 3) the validation set without background, and 4) validation sets with various backgrounds.

Some users reported that the COCO creation is slow. Here is an alternative to creating a meta-dataset: applying random image transformations to change the visual characteristics of 4) validation sets with various backgrounds. Given a validation set with a changed background, we can apply 5 random transformations to diversify it.

The users are suggested to use the way of ImageNet-C to apply transformations. ImageNet-C uses Pytorch data loader to speed up the process, please refer to the code. In our works, we use Imgaug for the transformations and there are other corruptions such as ImageNet-C-Bar.

Note that, we provide 3) the validation set without background, so the users can change the background easily based on their usage.

The second part contains three real-world test sets, 1) Pascal, 2) Caltech, and 3) ImageNet (note that, ImageNet test set is from theImageCLEF dataset). We also provide test sets with some image transformations. Enjoy!

Simon4Yan commented 2 years ago

Following up on the above, the learned coco classification model is here.

The model structure is

class FT_Resnet_fea(nn.Module):
    def __init__(self, mode='resnet50', num_classes=12, pretrained=True):
        super(FT_Resnet_fea, self).__init__()

        if mode == 'resnet50':
            model = models.resnet50(pretrained=pretrained)
        elif mode == 'resnet101':
            model = models.resnet101(pretrained=pretrained)
        elif mode == 'resnet152':
            model = models.resnet152(pretrained=pretrained)
        else:
            model = models.resnet18(pretrained=pretrained)

        self.features = nn.Sequential(
            model.conv1,
            model.bn1,
            model.relu,
            model.maxpool,
            model.layer1,
            model.layer2,
            model.layer3,
            model.layer4
        )
        self.num_classes = num_classes
        self.num_features = model.layer4[1].conv1.in_channels
        self.fc = nn.Linear(self.num_features, self.num_features // 2)
        self.classifier = nn.Linear(self.num_features // 2, num_classes)
        self.avg = nn.AdaptiveAvgPool2d(1)

    def forward(self, x):
        x = self.features(x)
        x = self.avg(x).view(-1, self.num_features)
        fea = self.fc(x)
        x = F.relu(fea)
        x = F.dropout(x, training=self.training)
        output = self.classifier(x)
        return output, fea

Here is an example of dataloader:

  # For training
  train_loader = torch.utils.data.DataLoader(
      IMAGE_COCO('YOUR_PATH/coco_train_val/', 'train.txt',
                 transform=transforms.Compose([
                     transforms.Resize([256, 256]),
                     transforms.RandomResizedCrop(size=224),
                     transforms.RandomHorizontalFlip(),
                     transforms.ToTensor(),
                     transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                          std=[0.229, 0.224, 0.225])
                 ])),
      batch_size=args.batch_size, shuffle=True, **kwargs)

  # For testing
  test_loader = torch.utils.data.DataLoader(
      IMAGE_COCO('YOUR_PATH/test_sets/', 'YOUR_PATH/test_sets/labels/i_List.txt',
            transform=transforms.Compose([
                transforms.Resize([256, 256]),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
            ])),
      batch_size=args.batch_size, shuffle=False, drop_last=False, **kwargs)
  def make_dataset(image_list):
      if len(image_list[0].split())==2:
          images = [(val.split()[0], int(val.split()[1])) for val in image_list]
      elif len(image_list[0].split()) > 2:
          images = []
          for val in image_list:
              images.append([val[:-3], int(val[-3:])])
          # images = [(val.split('.jpg')[0] + '.jpg', int(val.split('.jpg')[1])) for val in image_list]
      return images

  class IMAGE_COCO(data.Dataset):
      def __init__(self, path, image_list, transform=None, target_transform=None):
          super(IMAGE_COCO, self).__init__()
          self.imgs = make_dataset(open(image_list).readlines())
          self.path = path
          self.transform = transform
          self.target_transform = target_transform

      def __getitem__(self, index):
          """
          Args:
              index (int): Index
          Returns:
              tuple: (image, target) where target is class_index of the target class.
          """
          path, target = self.imgs[index]
          img = Image.open(self.path + path).convert('RGB')
          if self.transform is not None:
              img = self.transform(img)
          if self.target_transform is not None:
              target = self.target_transform(target)

          return img, target

      def __len__(self):
          return len(self.imgs)
Simon4Yan commented 2 years ago

If you find our project useful, please cite our works:

    @inproceedings{deng2020labels,
    author={Deng, Weijian and Zheng, Liang},
    title     = {Are Labels Always Necessary for Classifier Accuracy Evaluation?},
    booktitle = {Proc. CVPR},
    year      = {2021},
    }
    @inproceedings{deng2022labels,
    author={Deng, Weijian and Zheng, Liang},
    title     = {Are Labels Always Necessary for Classifier Accuracy Evaluation?},
    booktitle = {TPAMI},
    year      = {2022},
    }

Have a nice day! -Weijian

ashygsy commented 1 year ago

link has expired

Simon4Yan commented 1 year ago

@ashygsy

link has expired

Thanks for the reminder. I have fixed it. OneDrive notices me "Your organization's policy requires this link to expire after 30 days". I will find out a way to maintain the link.

Regards, Weijian

tomvii commented 10 months ago

Hi. Would it be possible to refresh the link again? It seems that the link has expired again. Thank you.

Simon4Yan commented 10 months ago

Hi. Would it be possible to refresh the link again? It seems that the link has expired again. Thank you.

Thanks. I have refreshed, I will use google drive later. Best, Weijian

zhouping11 commented 3 weeks ago

Would it be possible to refresh the link again? It seems that the link has expired again. Thank you very much.

Simon4Yan commented 2 weeks ago

Just refreshed, sorry for late response (struggling with CVPR...)