Open SimonBlanke opened 1 year ago
This new parameter would determine if the optimum the algorithm is searching for is the minimum or maximum of the objective-function. The API for this could look as follows:
import numpy as np from gradient_free_optimizers import RandomSearchOptimizer def parabola_function(para): loss = para["x"] * para["x"] return -loss search_space = {"x": np.arange(-10, 10, 0.1)} opt = RandomSearchOptimizer(search_space, optimum="minimum") opt.search(parabola_function, n_iter=100000) opt = RandomSearchOptimizer(search_space, optimum="maximum") opt.search(parabola_function, n_iter=100000)
This new parameter would determine if the optimum the algorithm is searching for is the minimum or maximum of the objective-function. The API for this could look as follows: