Open frj555 opened 6 months ago
Hi @frj555, this is a strange issue that is difficult to analyse without further information. It looks like the GS-HOTA is 0 because the pipeline did not produce any detection. Can you please answer the following questions:
Thank you for your quick answer:
I agree it seems no detection is performed regardless of the program running for more than 11 hours in my Intel(R) Core(TM) i7-9700K CPU 3.60 GHz 64 RAM, NVIDIA GForce RTX 2080 running the complete pipeline.
I am working in Pycharm with a Conda environment and getting the updated git version from your repository. Output from conda list:# Name Version Build Channel absl-py 2.1.0 pypi_0 pypi addict 2.4.0 pypi_0 pypi aiohttp 3.9.5 pypi_0 pypi aiosignal 1.3.1 pypi_0 pypi alabaster 0.7.16 pypi_0 pypi albumentations 1.4.7 pypi_0 pypi annotated-types 0.6.0 pypi_0 pypi antlr4-python3-runtime 4.9.3 pypi_0 pypi archspec 0.2.3 pyhd8ed1ab_0 conda-forge async-timeout 4.0.3 pypi_0 pypi attrs 23.2.0 pypi_0 pypi babel 2.15.0 pypi_0 pypi beautifulsoup4 4.12.3 pypi_0 pypi blas 2.122 mkl conda-forge blas-devel 3.9.0 22_win64_mkl conda-forge boltons 24.0.0 pyhd8ed1ab_0 conda-forge brotli-python 1.1.0 py310h00ffb61_1 conda-forge bzip2 1.0.8 hcfcfb64_5 conda-forge ca-certificates 2024.2.2 h56e8100_0 conda-forge certifi 2024.2.2 pyhd8ed1ab_0 conda-forge cffi 1.16.0 py310h8d17308_0 conda-forge charset-normalizer 3.3.2 pyhd8ed1ab_0 conda-forge chumpy 0.66 pypi_0 pypi click 8.1.7 pypi_0 pypi colorama 0.4.6 pyhd8ed1ab_0 conda-forge conda 24.5.0 py310h5588dad_0 conda-forge conda-libmamba-solver 24.1.0 pyhd8ed1ab_0 conda-forge conda-package-handling 2.2.0 pyh38be061_0 conda-forge conda-package-streaming 0.9.0 pyhd8ed1ab_0 conda-forge contourpy 1.2.1 pypi_0 pypi cuda-cccl 12.4.127 0 nvidia cuda-cudart 11.7.99 0 nvidia cuda-cudart-dev 11.7.99 0 nvidia cuda-cupti 11.7.101 0 nvidia cuda-libraries 11.7.1 0 nvidia cuda-libraries-dev 11.7.1 0 nvidia cuda-nvrtc 11.7.99 0 nvidia cuda-nvrtc-dev 11.7.99 0 nvidia cuda-nvtx 11.7.91 0 nvidia cuda-runtime 11.7.1 0 nvidia cycler 0.12.1 pypi_0 pypi cython 3.0.10 pypi_0 pypi deepdiff 7.0.1 pypi_0 pypi distro 1.9.0 pyhd8ed1ab_0 conda-forge docker-pycreds 0.4.0 pypi_0 pypi docutils 0.20.1 pypi_0 pypi easyocr 1.7.1 pypi_0 pypi exceptiongroup 1.2.1 pypi_0 pypi filelock 3.14.0 pypi_0 pypi filterpy 1.4.5 pypi_0 pypi flake8 7.0.0 pypi_0 pypi fmt 10.2.1 h181d51b_0 conda-forge fonttools 4.51.0 pypi_0 pypi freetype 2.12.1 hdaf720e_2 conda-forge frozendict 2.4.4 py310ha8f682b_0 conda-forge frozenlist 1.4.1 pypi_0 pypi fsspec 2024.5.0 pypi_0 pypi future 1.0.0 pypi_0 pypi gdown 4.7.3 pypi_0 pypi gitdb 4.0.11 pypi_0 pypi gitpython 3.1.43 pypi_0 pypi google-measurement-protocol 1.1.0 pypi_0 pypi grpcio 1.63.0 pypi_0 pypi h5py 3.11.0 pypi_0 pypi huggingface-hub 0.23.0 pypi_0 pypi hydra-core 1.3.2 pypi_0 pypi idna 3.7 pyhd8ed1ab_0 conda-forge imageio 2.34.1 pypi_0 pypi imagesize 1.4.1 pypi_0 pypi imgaug 0.4.0 pypi_0 pypi importlib-metadata 7.1.0 pypi_0 pypi iniconfig 2.0.0 pypi_0 pypi intel-openmp 2024.1.0 h57928b3_965 conda-forge isort 5.13.2 pypi_0 pypi jinja2 3.1.4 pypi_0 pypi joblib 1.4.2 pypi_0 pypi jpeg 9e hcfcfb64_3 conda-forge json-tricks 3.17.3 pypi_0 pypi jsonpatch 1.33 pyhd8ed1ab_0 conda-forge jsonpointer 2.4 py310h5588dad_3 conda-forge kiwisolver 1.4.5 pypi_0 pypi kornia 0.6.3 pypi_0 pypi krb5 1.21.2 heb0366b_0 conda-forge lap 0.5.dev0 pypi_0 pypi lazy-loader 0.4 pypi_0 pypi lcms2 2.15 ha5c8aab_0 conda-forge lerc 4.0.0 h63175ca_0 conda-forge libarchive 3.7.2 h313118b_1 conda-forge libblas 3.9.0 22_win64_mkl conda-forge libcblas 3.9.0 22_win64_mkl conda-forge libcublas 11.10.3.66 0 nvidia libcublas-dev 11.10.3.66 0 nvidia libcufft 10.7.2.124 0 nvidia libcufft-dev 10.7.2.124 0 nvidia libcurand 10.3.5.147 0 nvidia libcurand-dev 10.3.5.147 0 nvidia libcurl 8.7.1 hd5e4a3a_0 conda-forge libcusolver 11.4.0.1 0 nvidia libcusolver-dev 11.4.0.1 0 nvidia libcusparse 11.7.4.91 0 nvidia libcusparse-dev 11.7.4.91 0 nvidia libdeflate 1.17 hcfcfb64_0 conda-forge libffi 3.4.2 h8ffe710_5 conda-forge libhwloc 2.10.0 default_h2fffb23_1000 conda-forge libiconv 1.17 hcfcfb64_2 conda-forge liblapack 3.9.0 22_win64_mkl conda-forge liblapacke 3.9.0 22_win64_mkl conda-forge libmamba 1.5.8 h3f09ed1_0 conda-forge libmambapy 1.5.8 py310h04f2035_0 conda-forge libnpp 11.7.4.75 0 nvidia libnpp-dev 11.7.4.75 0 nvidia libnvjpeg 11.8.0.2 0 nvidia libnvjpeg-dev 11.8.0.2 0 nvidia libpng 1.6.43 h19919ed_0 conda-forge libsolv 0.7.29 h0ea2cb4_0 conda-forge libsqlite 3.45.3 hcfcfb64_0 conda-forge libssh2 1.11.0 h7dfc565_0 conda-forge libtiff 4.5.0 hf8721a0_2 conda-forge libuv 1.48.0 hcfcfb64_0 conda-forge libwebp-base 1.4.0 hcfcfb64_0 conda-forge libxcb 1.13 hcd874cb_1004 conda-forge libxml2 2.12.7 h283a6d9_0 conda-forge libzlib 1.2.13 hcfcfb64_5 conda-forge lightning 2.2.4 pypi_0 pypi lightning-utilities 0.11.2 pypi_0 pypi llvmlite 0.42.0 pypi_0 pypi lmdb 1.4.1 pypi_0 pypi lz4-c 1.9.4 hcfcfb64_0 conda-forge lzo 2.10 hcfcfb64_1001 conda-forge m2w64-gcc-libgfortran 5.3.0 6 conda-forge m2w64-gcc-libs 5.3.0 7 conda-forge m2w64-gcc-libs-core 5.3.0 7 conda-forge m2w64-gmp 6.1.0 2 conda-forge m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge markdown 3.6 pypi_0 pypi markdown-it-py 3.0.0 pypi_0 pypi markupsafe 2.1.5 pypi_0 pypi matplotlib 3.9.0 pypi_0 pypi mccabe 0.7.0 pypi_0 pypi mdit-py-plugins 0.4.1 pypi_0 pypi mdurl 0.1.2 pypi_0 pypi menuinst 2.0.2 py310h00ffb61_0 conda-forge mkl 2024.1.0 h66d3029_692 conda-forge mkl-devel 2024.1.0 h57928b3_692 conda-forge mkl-include 2024.1.0 h66d3029_692 conda-forge mmcv 2.0.1 pypi_0 pypi mmdet 3.1.0 pypi_0 pypi mmengine 0.10.4 pypi_0 pypi mmocr 1.0.1 pypi_0 pypi mmpose 1.3.1 pypi_0 pypi model-index 0.1.11 pypi_0 pypi monai 1.3.0 pypi_0 pypi motmetrics 1.4.0 pypi_0 pypi msys2-conda-epoch 20160418 1 conda-forge multidict 6.0.5 pypi_0 pypi munkres 1.1.4 pypi_0 pypi mutagen 1.47.0 pypi_0 pypi myst-parser 2.0.0 pypi_0 pypi networkx 3.3 pypi_0 pypi ninja 1.11.1.1 pypi_0 pypi numba 0.59.1 pypi_0 pypi numpy 1.26.4 py310hf667824_0 conda-forge omegaconf 2.3.0 pypi_0 pypi opencv-python 4.9.0.80 pypi_0 pypi opencv-python-headless 4.9.0.80 pypi_0 pypi opendatalab 0.0.10 pypi_0 pypi openjpeg 2.5.0 ha2aaf27_2 conda-forge openmim 0.3.9 pypi_0 pypi openpifpaf 0.13.11 pypi_0 pypi openssl 3.3.0 hcfcfb64_0 conda-forge openxlab 0.0.11 pypi_0 pypi ordered-set 4.1.0 pypi_0 pypi packaging 24.0 pyhd8ed1ab_0 conda-forge pandas 2.2.2 pypi_0 pypi pillow 9.4.0 py310hdbb7713_1 conda-forge pip 24.0 pyhd8ed1ab_0 conda-forge platformdirs 4.2.2 pyhd8ed1ab_0 conda-forge pluggy 1.5.0 pyhd8ed1ab_0 conda-forge posetrack21 0.2 pypi_0 pypi posetrack21-mot 0.2 pypi_0 pypi poseval 0.1.0 pypi_0 pypi prices 1.1.1 pypi_0 pypi protobuf 4.25.3 pypi_0 pypi prtreid 1.3.0 pypi_0 pypi psutil 5.9.8 pypi_0 pypi pthread-stubs 0.4 hcd874cb_1001 conda-forge pthreads-win32 2.9.1 hfa6e2cd_3 conda-forge pybind11-abi 4 hd8ed1ab_3 conda-forge pyclipper 1.3.0.post5 pypi_0 pypi pycocoevalcap 1.2 pypi_0 pypi pycocotools 2.0.7 pypi_0 pypi pycodestyle 2.11.1 pypi_0 pypi pycosat 0.6.6 py310h8d17308_0 conda-forge pycparser 2.22 pyhd8ed1ab_0 conda-forge pycryptodome 3.20.0 pypi_0 pypi pycryptodomex 3.20.0 pypi_0 pypi pydantic 2.7.1 pypi_0 pypi pydantic-core 2.18.2 pypi_0 pypi pyflakes 3.2.0 pypi_0 pypi pygments 2.18.0 pypi_0 pypi pyparsing 3.1.2 pypi_0 pypi pysocks 1.7.1 pyh0701188_6 conda-forge pysparkling 0.6.2 pypi_0 pypi pytest 8.2.0 pypi_0 pypi python 3.10.14 h4de0772_0_cpython conda-forge python-bidi 0.4.2 pypi_0 pypi python-dateutil 2.9.0.post0 pypi_0 pypi python-json-logger 2.0.7 pypi_0 pypi python_abi 3.10 4_cp310 conda-forge pytorch 1.13.1 py3.10_cuda11.7_cudnn8_0 pytorch pytorch-cuda 11.7 h16d0643_5 pytorch pytorch-lightning 2.2.4 pypi_0 pypi pytorch-mutex 1.0 cuda pytorch pytz 2024.1 pypi_0 pypi pywin32 306 pypi_0 pypi pyyaml 6.0.1 pypi_0 pypi rapidfuzz 3.9.0 pypi_0 pypi regex 2024.5.15 pypi_0 pypi reproc 14.2.4.post0 hcfcfb64_1 conda-forge reproc-cpp 14.2.4.post0 h63175ca_1 conda-forge requests 2.31.0 pyhd8ed1ab_0 conda-forge rich 13.7.1 pypi_0 pypi ruamel.yaml 0.18.6 py310h8d17308_0 conda-forge ruamel.yaml.clib 0.2.8 py310h8d17308_0 conda-forge safetensors 0.4.3 pypi_0 pypi scikit-image 0.23.2 pypi_0 pypi scikit-learn 1.4.2 pypi_0 pypi scikit-video 1.1.11 pypi_0 pypi scipy 1.13.0 pypi_0 pypi seaborn 0.13.2 pypi_0 pypi sentry-sdk 2.2.0 pypi_0 pypi setproctitle 1.3.3 pypi_0 pypi setuptools 69.5.1 pyhd8ed1ab_0 conda-forge shapely 2.0.4 pypi_0 pypi six 1.16.0 pypi_0 pypi smmap 5.0.1 pypi_0 pypi sn-gamestate 0.2.0 pypi_0 pypi snowballstemmer 2.2.0 pypi_0 pypi soccernet 0.1.60 pypi_0 pypi soupsieve 2.5 pypi_0 pypi sparse 0.15.1 pypi_0 pypi sphinx 7.3.7 pypi_0 pypi sphinx-rtd-theme 2.0.0 pypi_0 pypi sphinxcontrib-applehelp 1.0.8 pypi_0 pypi sphinxcontrib-devhelp 1.0.6 pypi_0 pypi sphinxcontrib-htmlhelp 2.0.5 pypi_0 pypi sphinxcontrib-jquery 4.1 pypi_0 pypi sphinxcontrib-jsmath 1.0.1 pypi_0 pypi sphinxcontrib-qthelp 1.0.7 pypi_0 pypi sphinxcontrib-serializinghtml 1.1.10 pypi_0 pypi tabulate 0.9.0 pypi_0 pypi tb-nightly 2.17.0a20240515 pypi_0 pypi tbb 2021.12.0 h91493d7_0 conda-forge tensorboard-data-server 0.7.2 pypi_0 pypi termcolor 2.4.0 pypi_0 pypi terminaltables 3.1.10 pypi_0 pypi thop 0.1.1-2209072238 pypi_0 pypi threadpoolctl 3.5.0 pypi_0 pypi tifffile 2024.5.10 pypi_0 pypi timm 0.9.16 pypi_0 pypi tk 8.6.13 h5226925_1 conda-forge tomli 2.0.1 pypi_0 pypi torchmetrics 0.10.3 pypi_0 pypi torchreid 1.2.4 pypi_0 pypi torchvision 0.14.1 pypi_0 pypi tqdm 4.66.4 pyhd8ed1ab_0 conda-forge track-bench-track 1.0.1 pypi_0 pypi trackeval 1.0.dev1 pypi_0 pypi tracklab 1.1.2 pypi_0 pypi tracklab-calibration 1.0.2 pypi_0 pypi truststore 0.8.0 pyhd8ed1ab_0 conda-forge typing_extensions 4.11.0 pyha770c72_0 conda-forge tzdata 2024.1 pypi_0 pypi ucrt 10.0.22621.0 h57928b3_0 conda-forge ultralytics 8.0.61 pypi_0 pypi urllib3 2.2.1 pyhd8ed1ab_0 conda-forge vc 14.3 hcf57466_18 conda-forge vc14_runtime 14.38.33130 h82b7239_18 conda-forge vs2015_runtime 14.38.33130 hcb4865c_18 conda-forge wandb 0.17.0 pypi_0 pypi websockets 12.0 pypi_0 pypi werkzeug 3.0.3 pypi_0 pypi wheel 0.43.0 pyhd8ed1ab_1 conda-forge win_inet_pton 1.1.0 pyhd8ed1ab_6 conda-forge xmltodict 0.13.0 pypi_0 pypi xorg-libxau 1.0.11 hcd874cb_0 conda-forge xorg-libxdmcp 1.1.3 hcd874cb_0 conda-forge xtcocotools 1.14.3 pypi_0 pypi xz 5.2.6 h8d14728_0 conda-forge yacs 0.1.8 pypi_0 pypi yaml-cpp 0.8.0 h63175ca_0 conda-forge yapf 0.40.2 pypi_0 pypi yarl 1.9.4 pypi_0 pypi yt-dlp 2024.4.9 pypi_0 pypi zipp 3.18.2 pypi_0 pypi zstandard 0.22.0 py310h0009e47_0 conda-forge
The only changes I performed locally are in soccernet.yml file to reduce batch size, define folder paths, and also in tracker_state.py to include ", force_zip64=True" in line 276).
I think it is not tracking as I can see in the output video. Also in another test with a input reduced version of SNSG-021 input file(150 images instead of 750), and modifying Labels-GameState.json accordingly, the output video is not showing any tracking output (players nor pitch lines).
Actually I am planning to keep trying new tests with this reduced input to see if I manage to avoid some of the error messages I received above.
A) The first set of warnings, I can see also in your explanotary video (Youtube "SoccerNet 2024 Live Tutorials - ft. Vladimir Somers, Victor Joos, and Jan Held"), so I guess they are not criticals: " Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth The model and loaded state dict do not match exactly unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std 05/27 17:45:15 - mmengine - WARNING - Failed to search registry with scope "mmocr" in the "function" registry tree. As a workaround, the current "function" registry in "mmengine" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmocr" is a correct scope, or whether the registry is initialized. Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth The model and loaded state dict do not match exactly unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth The model and loaded state dict do not match exactly unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth The model and loaded state dict do not match exactly unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std".
B) My doubt is about :"** The following layers are discarded due to unmatched keys or layer size: ['global_identity_classifier.classifier.weight', 'background_identity_classifier.classifier.weight', 'foreground_identity_classifier.classifier.weight', 'concat_parts_identity_classifier.classifier.weight', 'parts_identity_classifier.0.classifier.weight'] Building train transforms ..." and how avoding it.
Please note in the output folder REID/0 folder is empty after running every test!!
C) The final warnings. "INFO Saved state at : X:\Pycharmproj\Sngamestate\sn-gamestate\outputs\sn-gamestate\2024-05-27\17-44-38\states\sn-gamestate.pklz main.py:66 [W C:\cb\pytorch_1000000000000\work\torch\csrc\CudaIPCTypes.cpp:95] Producer process tried to deallocate over 1000 memory blocks referred by consumer processes. Deallocation might be significantly slowed down. We assume it will never going to be the case, but if it is, please file but to https://github.com/pytorch/pytorch [W C:\cb\pytorch_1000000000000\work\torch\csrc\CudaIPCTypes.cpp:15] Producer process has been terminated before all shared CUDA tensors released. See Note [Sharing CUDA tensors] [W CUDAGuardImpl.h:46] Warning: CUDA warning: driver shutting down (function uncheckedGetDevice) ...." are displayed after GS-HOTA calculation so I guess not important for tracking.
Cheers
Hi @frj555 , Can you make sure your "trackeval" library is up to date? you should install the latest version from "https://github.com/SoccerNet/sn-trackeval". Also, can you share the current version of your dataset? I should be the latest one, i.e. "1.3", you can check this number at the beginning one of the .json annotation file "Labels-GameState.json". And what do you mean by "modifying Labels-GameState.json accordingly"? If you want to perform tracking on less images, you can use the "nframes: 150" config next to the "nvid: 1" config below the "dataset" key.
About error B, this does not explain why you don't see any detection or tracking result. Error C is indeed strange. In "tracklab/main.py", could you put a breakpoint after "tracking_engine.track_dataset()", on the line "evaluate(cfg, evaluator, tracker_state)". There, you can have a look at what is inside the "tracker_state.detections_pred" dataframe. I should contain detections, but from what I see with the error you get, it seems this dataframe is empty for you. It would be helpful to know if this dataframe is empty or not after tracking is done.
Hi.
Also with option=nframes 200 (first 150 frames before match kick-off, no movement in players) and using originla SNGS-021 folder and labels.
"modifying Labels-GameState.json accordingly": I mean keeping info only from image 151 to 300, and changing labels .json file info to: { "info": { "version": "1.3", "game_id": "2", "id": "021", "num_tracklets": "25", "action_position": "82617", "action_class": "Kick-off", "visibility": "visible", "game_time_start": "1 - 01:22", "game_time_stop": "1 - 01:28", "clip_start": "82000", "clip_stop": "88000", "name": "SNGS-021", "im_dir": "img1", "frame_rate": 25, "seq_length": 150, "im_ext": ".jpg" },
Starting again from scratch, and reviewing (tracklab) conda environment I found Error messages reagarding trackeval and mmcv.
"ERROR: Ignored the following versions that require a different python version: 0.0.1 Requires-Python ==3.7.0 ERROR: Could not find a version that satisfies the requirement trackeval (unavailable) (from tracklab) (from versions: none) ERROR: No matching distribution found for trackeval (unavailable) bash: mim: command not found" when running pip install -e . pip install -e ../tracklab mim install mmcv==2.0.1
at conda environment(tracklab).
Many thanks for your time
Hi frj555,
Could you update tracklab to the latest version ? Some changes made in sn-trackeval changed the way we had to specify it as a dependency. The "mim: command not found" is probably just an error due to the fact that the first installation (which installs mim) did not succeed.
please, can you advice how proceeding to update? I have just relaunched the project with the last git clones as per:
"mkdir soccernet cd soccernet git clone https://github.com/SoccerNet/sn-gamestate.git git clone https://github.com/TrackingLaboratory/tracklab.git"
and then install dependencies as per your instructions.
Then conda environment and working in Pycharm.
This is supposed to be tracklab latest version??
Many thanks
Yes, this should indeed give you the latest version of tracklab.
Do you still have errors when running any of the installation commands ? ("pip install -e ." or "pip install -e ../tracklab" or "mim install ....")
The last run I reinstall everything again (Windows11, Pycharm, Conda Environment) and no errors occurred in trackeval – not sure about mim-), but no tracking occurring after running the complete pipeline in one video (reid/0 folder empty and states/.PKLZ file almost 2 Gb). Of course any tracking evidence in the output video (predictions map is empty).
Maybe is better idea trying a new Project only with tracking workflow and outside sn-gamestate Project??. Any recommendation about which Project and workflow I can try?
Thank you Enviado desde Correohttps://go.microsoft.com/fwlink/?LinkId=550986 para Windows
De: Victor Joos @.> Enviado: Monday, June 3, 2024 10:13:09 AM Para: SoccerNet/sn-gamestate @.> Cc: frj555 @.>; Mention @.> Asunto: Re: [SoccerNet/sn-gamestate] Errors running "python -m tracklab.main -cn soccernet" giving final GS-HOTA = 0% (Issue #11)
Yes, this should indeed give you the latest version of tracklab.
Do you still have errors when running any of the installation commands ? ("pip install -e ." or "pip install -e ../tracklab" or "mim install ....")
— Reply to this email directly, view it on GitHubhttps://github.com/SoccerNet/sn-gamestate/issues/11#issuecomment-2144551574, or unsubscribehttps://github.com/notifications/unsubscribe-auth/BIS52QPLFWXF5BAZSM6WBKLZFQQRLAVCNFSM6AAAAABIML5ZPWVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDCNBUGU2TCNJXGQ. You are receiving this because you were mentioned.Message ID: @.***>
(tracklab) PS X:\Pycharmproj\Sngamestate\sn-gamestate> python -m tracklab.main -cn soccernet [2024-05-27 17:44:38,788][main][INFO] - Using device: 'cuda'. Loading SoccerNetGS 'train' set videos ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:06 Loading SoccerNetGS 'valid' set videos ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:06 Loading SoccerNetGS 'test' set videos ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:06 Loading SoccerNetGS 'challenge' set videos ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:06 Overwriting current config with config loaded from X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid/prtreid-soccernet-baseline.pth.tar Diff from default config : {'batch_size': 32, 'ce': 0.0, 'dim_reduce_output': 256, 'hrnet_pretrained_path': 'X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid', 'id': 0.0, 'load_config': True, 'mask_filtering_testing': False, 'max_epoch': 20, 'preprocess': 'id', 'test_embeddings': "['globl']", 'tr': 0.0, 'train_sampler': 'PrtreidSampler', 'train_sampler_t': 'PrtreidSampler'} Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth The model and loaded state dict do not match exactly
unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std
05/27 17:45:15 - mmengine - WARNING - Failed to search registry with scope "mmocr" in the "function" registry tree. As a workaround, the current "function" registry in "mmengine" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmocr" is a correct scope, or whether the registry is initialized. Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth The model and loaded state dict do not match exactly
unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth The model and loaded state dict do not match exactly
unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth The model and loaded state dict do not match exactly
unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std
[05/27/24 17:45:17] INFO Pipeline: YOLOv8 -> PRTReId -> BPBReIDStrongSORT -> TVCalib_Segmentation -> TVCalib -> MMOCR -> MajorityVoteTracklet -> TrackletTeamClustering -> TrackletTeamSideLabeling module.py:68 INFO Starting tracking operation on valid set. main.py:47 INFO Saving TrackerState to X:\Pycharmproj\Sngamestate\sn-gamestate\outputs\sn-gamestate\2024-05-27\17-44-38\states\sn-gamestate.pklz tracker_state.py:45 INFO Pipeline has been validated module.py:85 building model on device cuda => init weights from normal distribution Loading pretrained ImageNet HRNet32 model at X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid\hrnetv2_w32_imagenet_pretrained.pth => loading pretrained model X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid\hrnetv2_w32_imagenet_pretrained.pth Successfully loaded pretrained weights from "X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid/prtreid-soccernet-baseline.pth.tar" ** The following layers are discarded due to unmatched keys or layer size: ['global_identity_classifier.classifier.weight', 'background_identity_classifier.classifier.weight', 'foreground_identity_classifier.classifier.weight', 'concat_parts_identity_classifier.classifier.weight', 'parts_identity_classifier.0.classifier.weight'] Building train transforms ...
Building test transforms ...
Tracking videos (SNGS-021) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1/1 0:52:08 • 0:00:00 [05/27/24 18:40:13] INFO Starting evaluation. main.py:107 INFO Starting evaluation using TrackEval library (https://github.com/JonathonLuiten/TrackEval) trackeval_evaluator.py:28 INFO Tracking predictions saved in SoccerNetGS format in eval\pred\SoccerNetGS-valid\tracklab trackeval_evaluator.py:45 INFO Tracking ground truth saved in SoccerNetGS format in eval\pred\SoccerNetGS-valid\tracklab trackeval_evaluator.py:65 Initializing the dataset class for the SoccerNet Game State Reconstruction task. IMPORTANT: The official evaluation metric for the task, i.e. the 'GS-HOTA' will appear under the 'HOTA' name in the evaluation script output. This happen because GS-HOTA mainly uses the same logic as the HOTA metric, the HOTA evaluation class is therefore not forked but re-used. The key practical difference between the GS-HOTA and the HOTA is actually the similarity metric used to match predictions with ground truth.Since this similarity score is computed outside the HOTA class (i.e. inside the SoccerNetGS dataset class), there was no need to fork it into a GS-HOTA class. Please refer to the official paper for more information. Using a sigma of 2.042694913268175 for the gaussian similarity metric, based on a distance tolerance of 5 meters.
Evaluating 1 tracker(s) on 1 sequence(s) for 1 class(es) on SoccerNetGS dataset using the following metrics: HOTA, Identity, Count
Evaluating tracklab
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 14.70it/s]
HOTA: tracklab-cls_comb_cls_av HOTA DetA AssA DetRe DetPr AssRe AssPr LocA OWTA HOTA(0) LocA(0) HOTALocA(0) COMBINED 0 0 0 0 0 0 0 100 0 0 100 0
Identity: tracklab-cls_comb_cls_av IDF1 IDR IDP IDTP IDFN IDFP COMBINED 0 0 0 0 2067 0
Count: tracklab-cls_comb_cls_av Dets GT_Dets IDs GT_IDs COMBINED 0 2067 0 19
HOTA: tracklab-cls_comb_det_av HOTA DetA AssA DetRe DetPr AssRe AssPr LocA OWTA HOTA(0) LocA(0) HOTALocA(0) COMBINED 0 0 0 0 0 0 0 100 0 0 100 0
Identity: tracklab-cls_comb_det_av IDF1 IDR IDP IDTP IDFN IDFP COMBINED 0 0 0 0 2067 0
Count: tracklab-cls_comb_det_av Dets GT_Dets IDs GT_IDs COMBINED 0 2067 0 19 [05/27/24 18:40:15] INFO SoccerNet Game State Reconstruction performance GS-HOTA = 0% (config: EVAL_SPACE=pitch, USE_JERSEY_NUMBERS=True, USE_TEAMS=True, USE_ROLES=True, EVAL_DIST_TOL=5) soccernet_game_state.py:48 INFO Have a look at 'tracklab/tracklab/configs/dataset/soccernet_gs.yaml' for more details about the GS-HOTA metric and the evaluation configuration. soccernet_game_state.py:49 INFO Saved state at : X:\Pycharmproj\Sngamestate\sn-gamestate\outputs\sn-gamestate\2024-05-27\17-44-38\states\sn-gamestate.pklz main.py:66 [W C:\cb\pytorch_1000000000000\work\torch\csrc\CudaIPCTypes.cpp:95] Producer process tried to deallocate over 1000 memory blocks referred by consumer processes. Deallocation might be significantly slowed down. We assume it will never going to be the case, but if it is, please file but to https://github.com/pytorch/pytorch [W C:\cb\pytorch_1000000000000\work\torch\csrc\CudaIPCTypes.cpp:15] Producer process has been terminated before all shared CUDA tensors released. See Note [Sharing CUDA tensors] [W CUDAGuardImpl.h:46] Warning: CUDA warning: driver shutting down (function uncheckedGetDevice) ....