StartHua / Comfyui_CXH_joy_caption

Recommended based on comfyui node pictures:Joy_caption + MiniCPMv2_6-prompt-generator + florence2
Apache License 2.0
444 stars 26 forks source link

模型路径非comfyui路径,运行显示CUDA:0 #38

Open mexifan opened 2 months ago

mexifan commented 2 months ago

我的路径是E:\ComfyUI-aki-v1.3, 模型下载却是E:\comfyui

ComfyUI Error Report

Error Details


## System Information
- **ComfyUI Version:** v0.2.0-2-g00a5d08
- **Arguments:** E:\ComfyUI-aki-v1.3\main.py --auto-launch --preview-method auto --disable-cuda-malloc
- **OS:** nt
- **Python Version:** 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]
- **Embedded Python:** false
- **PyTorch Version:** 2.1.2+cu118
## Devices

- **Name:** cuda:0 NVIDIA GeForce RTX 4080 SUPER : cudaMallocAsync
  - **Type:** cuda
  - **VRAM Total:** 17170956288
  - **VRAM Free:** 2897010616
  - **Torch VRAM Total:** 12884901888
  - **Torch VRAM Free:** 29155256
----------------------------------------------------------
cuda:0是不是要关闭核显?
langbowang commented 2 months ago

我的路径是在C盘,模型也同样下在了C盘根目下新建的comfyui文件夹下

mexifan commented 2 months ago

我的路径是在C盘,模型也同样在C盘根目下新建的comfyui文件夹下

是comfyui的文件夹名字,比如你的文件夹叫C:/comfyui123 但是他自动下载会叫 C:/comfyui

ihmily commented 2 months ago

错误参考https://github.com/StartHua/Comfyui_CXH_joy_caption/pull/66

修复后可用代码 https://github.com/ihmily/Comfyui_CXH_joy_caption 已提交pr

okamifish commented 2 months ago

我的comfyui也是ComfyUI-aki-v1.3,我发现在 E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI_HF_Servelress_Inference\nodes 这个路径下有个 joy caption.py ,里面有个模型的下载路径 image

mexifan commented 2 months ago

错误参考#66

修复后可用代码 https://github.com/ihmily/Comfyui_CXH_joy_caption 已提交pr 其实之前所有的报错是因为ComfyUI_HF_Servelress_Inference 这个插件,应该是有几个节点自动识别成这个插件,删了就不报错了都正常了,但是目前新版的有问题加载完模型不跑,提示 E:\ComfyUI-aki-v1.3\models\clip\siglip-so400m-patch14-384 E:\ComfyUI-aki-v1.3\models\LLM\Meta-Llama-3.1-8B We will use 90% of the memory on device 0 for storing the model, and 10% for the buffer to avoid OOM. You can set max_memory in to a higher value to use more memory (at your own risk). Some parameters are on the meta device because they were offloaded to the cpu. 就一只停,但是滚回上一版本就好了

mexifan commented 2 months ago

我的comfyui也是ComfyUI-aki-v1.3,我发现在 E:\ComfyUI-aki-v1.3\custom_nodes\ComfyUI_HF_Servelress_Inference\nodes 这个路径下有个 joy caption.py ,里面有个模型的下载路径 image

删除这个插件,用不上这个插件,应该是命名重复节点了

Lwtt7766 commented 1 month ago

Hi, I fixed this error by changing some lines in the Joy_caption_node.py .

It's my first time posting something, and it seems like I can't upload the py file. So I pasted the entire code below: I hope this is helpful to you guys!

from huggingface_hub import InferenceClient from torch import nn from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM from pathlib import Path import torch import torch.amp.autocast_mode from PIL import Image import os import folder_paths

from .lib.ximg import from .lib.xmodel import

from model_management import get_torch_device DEVICE = get_torch_device() def get_torch_device(): if torch.cuda.is_available():

选择第一个可用的GPU

    device = torch.device("cuda:0")
    print(f"There are {torch.cuda.device_count()} GPU(s) available.")
    print(f"We will use the GPU: {device}")
else:

    device = torch.device("cpu")
    print("No GPU available, using the CPU instead.")
    return device

class JoyPipeline: def init(self): self.clip_model = None self.clip_processor =None self.tokenizer = None self.text_model = None self.image_adapter = None self.parent = None

def clearCache(self):
    self.clip_model = None
    self.clip_processor =None
    self.tokenizer = None
    self.text_model = None
    self.image_adapter = None 

class ImageAdapter(nn.Module): def init(self, input_features: int, output_features: int): super().init() self.linear1 = nn.Linear(input_features, output_features) self.activation = nn.GELU() self.linear2 = nn.Linear(output_features, output_features)

def forward(self, vision_outputs: torch.Tensor):
    x = self.linear1(vision_outputs)
    x = self.activation(x)
    x = self.linear2(x)
    return x

class Joy_caption_load:

def __init__(self):
    self.model = None
    self.pipeline = JoyPipeline()
    self.pipeline.parent = self
    pass

@classmethod
def INPUT_TYPES(s):
    return {
        "required": {
            "model": (["unsloth/Meta-Llama-3.1-8B-bnb-4bit", "meta-llama/Meta-Llama-3.1-8B"],), 

        }
    }

CATEGORY = "CXH/LLM"
RETURN_TYPES = ("JoyPipeline",)
FUNCTION = "gen"

def loadCheckPoint(self):
    # 清除一波
    if self.pipeline != None:
        self.pipeline.clearCache() 

     # clip
    model_id = "google/siglip-so400m-patch14-384"
    CLIP_PATH = download_hg_model(model_id,"clip")

    clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) 
    clip_model = AutoModel.from_pretrained(
            CLIP_PATH,
            trust_remote_code=True
        )

    clip_model = clip_model.vision_model
    clip_model.eval()
    clip_model.requires_grad_(False)
    clip_model.to("cuda")

    # LLM
    MODEL_PATH = download_hg_model(self.model,"LLM")
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH,use_fast=False)
    assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"

    text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto",trust_remote_code=True)
    text_model.eval()

    # Image Adapter
    adapter_path =  os.path.join(folder_paths.models_dir,"Joy_caption","image_adapter.pt")

    image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size) # ImageAdapter(clip_model.config.hidden_size, 4096) 
    image_adapter.load_state_dict(torch.load(adapter_path, map_location="cpu"))
    adjusted_adapter =  image_adapter #AdjustedImageAdapter(image_adapter, text_model.config.hidden_size)
    adjusted_adapter.eval()
    adjusted_adapter.to("cuda")

    self.pipeline.clip_model = clip_model
    self.pipeline.clip_processor = clip_processor
    self.pipeline.tokenizer = tokenizer
    self.pipeline.text_model = text_model
    self.pipeline.image_adapter = adjusted_adapter

def clearCache(self):
     if self.pipeline != None:
          self.pipeline.clearCache()

def gen(self,model):
    if self.model == None or self.model != model or self.pipeline == None:
        self.model = model
        self.loadCheckPoint()
    return (self.pipeline,)

class Joy_caption:

def __init__(self):
    pass

@classmethod
def INPUT_TYPES(s):
    return {
        "required": {
            "joy_pipeline": ("JoyPipeline",),
            "image": ("IMAGE",),
            "prompt":   ("STRING", {"multiline": True, "default": "A descriptive caption for this image"},),
            "max_new_tokens":("INT", {"default": 1024, "min": 10, "max": 4096, "step": 1}),
            "temperature": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
            "cache": ("BOOLEAN", {"default": False}),
        }
    }

CATEGORY = "CXH/LLM"
RETURN_TYPES = ("STRING",)
FUNCTION = "gen"
def gen(self,joy_pipeline,image,prompt,max_new_tokens,temperature,cache):
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
    if joy_pipeline.clip_processor == None :
        joy_pipeline.parent.loadCheckPoint()    

    clip_processor = joy_pipeline.clip_processor
    tokenizer = joy_pipeline.tokenizer
    clip_model = joy_pipeline.clip_model
    image_adapter = joy_pipeline.image_adapter
    text_model = joy_pipeline.text_model

    input_image = tensor2pil(image)

    # Preprocess image
    pImge = clip_processor(images=input_image, return_tensors='pt').pixel_values
    pImge = pImge.to(DEVICE)

    # Tokenize the prompt
    prompt = tokenizer.encode(prompt, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
    # Embed image
    with torch.amp.autocast_mode.autocast(device_type='cuda', dtype=torch.float16, enabled=True):
        vision_outputs = clip_model(pixel_values=pImge, output_hidden_states=True)
        image_features = vision_outputs.hidden_states[-2]
        embedded_images = image_adapter(image_features)
        embedded_images = embedded_images.to(DEVICE)

    # Embed prompt
    prompt_embeds = text_model.model.embed_tokens(prompt.to(DEVICE))
    assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
    embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))   

    # Construct prompts
    inputs_embeds = torch.cat([
        embedded_bos.expand(embedded_images.shape[0], -1, -1),
        embedded_images.to(dtype=embedded_bos.dtype),
        prompt_embeds.expand(embedded_images.shape[0], -1, -1),
    ], dim=1)

    input_ids = torch.cat([
        torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
        torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
        prompt,
    ], dim=1).to(DEVICE)
    attention_mask = torch.ones_like(input_ids)

    generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=True, top_k=10, temperature=temperature, suppress_tokens=None)

    # Trim off the prompt
    generate_ids = generate_ids[:, input_ids.shape[1]:]
    if generate_ids[0][-1] == tokenizer.eos_token_id:
        generate_ids = generate_ids[:, :-1]

    caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
    r = caption.strip()

    if cache == False:
       joy_pipeline.parent.clearCache()  

    return (r,)