Startonix / Modular-AI

Advanced AI Training and Building Repository
0 stars 0 forks source link

Representation for Unified Architecture #92

Open Startonix opened 5 months ago

Startonix commented 5 months ago

To integrate various specialized processors such as Tensor Processing Units (TPUs), Language Processing Units (LPUs), Graphics Processing Units (GPUs), and others into the Cyclops-64 architecture, we need to consider them as specific types of computational units within our overall unified architecture. This approach allows us to treat them as specialized groups within the Cyclops-64 framework, each optimized for their respective tasks.

Key Steps for Integration Unified Control and Management: All processors, regardless of type, will be managed by a central control unit. This unit will dynamically allocate tasks based on the specific capabilities of each processor type. Specialized Processing Groups: Create dedicated groups for TPUs, LPUs, GPUs, and other specialized processors. Each group will handle specific tasks that align with its strengths. Common Interconnects: Use a unified interconnect system to facilitate efficient communication between different types of processors. This ensures low-latency data transfer and coordination. Memory Hierarchy: Implement a shared memory hierarchy that allows all processors to access common data structures, while also providing dedicated high-speed memory for each specialized group. Scalability: Ensure the architecture is modular and scalable, allowing for easy expansion and integration of additional processors as needed. Updated Group Structure Control Group: Centralized control unit to manage tasks and resources. Arithmetic Group: Perform basic arithmetic operations. Tensor Group: Handle tensor operations and advanced mathematical computations. Memory Group: Manage memory access and data storage. Communication Group: Facilitate communication between different CPU groups. Optimization Group: Conduct optimization tasks and advanced mathematical operations. Data Processing Group: Perform data processing and transformation tasks. Specialized Computation Group: Handle specific computations such as eigen decomposition and Fourier transforms. Machine Learning Group: Dedicated to training and inference tasks for machine learning models. Simulation Group: Run large-scale simulations and modeling tasks. I/O Management Group: Handle input/output operations and data exchange with external systems. Security Group: Perform security-related tasks, such as encryption and threat detection. Redundancy Group: Manage redundancy and failover mechanisms to ensure system reliability. TPU Group: Accelerate machine learning workloads. LPU Group: Optimize language processing tasks. GPU Group: Handle graphical computations and parallel processing for deep learning.

import numpy as np

Define tensor operations and modular components

def tensor_product(A, B): return np.tensordot(A, B, axes=0)

def krull_dimension(matrix): return np.linalg.matrix_rank(matrix)

def matrix_multiplication(A, B): return np.dot(A, B)

def eigen_decomposition(matrix): eigenvalues, eigenvectors = np.linalg.eig(matrix) return eigenvalues, eigenvectors

def fourier_transform(data): return np.fft.fft(data)

def alu_addition(A, B): return A + B

def alu_subtraction(A, B): return A - B

def alu_multiplication(A, B): return A * B

def alu_division(A, B): return A / B

Define the CPUProcessor class

class CPUProcessor: def init(self, id, processor_type='general'): self.id = id self.type = processortype self.registers = [np.zeros((2, 2)) for in range(4)] # 4 Registers, 2x2 Matrices self.cache = np.zeros((4, 4)) # Simplified Cache

def load_to_register(self, data, register_index):
    self.registers[register_index] = data

def execute_operation(self, operation, reg1, reg2):
    A = self.registers[reg1]
    B = self.registers[reg2]
    if operation == 'add':
        result = alu_addition(A, B)
    elif operation == 'sub':
        result = alu_subtraction(A, B)
    elif operation == 'mul':
        result = alu_multiplication(A, B)
    elif operation == 'div':
        result = alu_division(A, B)
    else:
        raise ValueError("Unsupported operation")
    self.cache[:2, :2] = result  # Store result in cache (simplified)
    return result

def tensor_operation(self, reg1, reg2):
    A = self.registers[reg1]
    B = self.registers[reg2]
    return tensor_product(A, B)

def optimize_operation(self, matrix):
    return krull_dimension(matrix), eigen_decomposition(matrix)

Cyclops-64 Architecture with 10,000 CPUs and Specialized Processors

class Cyclops64: def init(self): self.num_cpus = 10000 self.cpus = [CPUProcessor(i) for i in range(self.num_cpus)] self.shared_cache = np.zeros((10000, 10000)) # Shared cache for all CPUs self.global_memory = np.zeros((100000, 100000)) # Global interleaved memory self.interconnect = np.zeros((self.num_cpus, self.num_cpus)) # Communication matrix self.control_unit = self.create_control_unit() # Centralized Control Unit

    # Group Allocation
    self.groups = {
        'control': self.cpus[0:200],
        'arithmetic': self.cpus[200:1400],
        'tensor': self.cpus[1400:2400],
        'memory': self.cpus[2400:3200],
        'communication': self.cpus[3200:4000],
        'optimization': self.cpus[4000:5000],
        'data_processing': self.cpus[5000:6200],
        'specialized_computation': self.cpus[6200:7000],
        'machine_learning': self.cpus[7000:8200],
        'simulation': self.cpus[8200:9400],
        'io_management': self.cpus[9400:10000],
        'security': self.cpus[10000:10400],
        'redundancy': self.cpus[10400:11000],
        'tpu': [CPUProcessor(i, processor_type='tpu') for i in range(11000, 11400)],
        'lpu': [CPUProcessor(i, processor_type='lpu') for i in range(11400, 11800)],
        'gpu': [CPUProcessor(i, processor_type='gpu') for i in range(11800, 12200)],
    }

def create_control_unit(self):
    # Simplified control logic for dynamic resource allocation
    return {
        'task_allocation': np.zeros(self.num_cpus),
        'resource_management': np.zeros((self.num_cpus, self.num_cpus))
    }

def load_to_cpu_register(self, cpu_id, data, register_index):
    self.cpus[cpu_id].load_to_register(data, register_index)

def execute_cpu_operation(self, cpu_id, operation, reg1, reg2):
    return self.cpus[cpu_id].execute_operation(operation, reg1, reg2)

def tensor_cpu_operation(self, cpu_id, reg1, reg2):
    return self.cpus[cpu_id].tensor_operation(reg1, reg2)

def optimize_cpu_operation(self, cpu_id, matrix):
    return self.cpus[cpu_id].optimize_operation(matrix)

def communicate(self, cpu_id_1, cpu_id_2, data):
    # Optimized communication between CPUs
    self.interconnect[cpu_id_1, cpu_id_2] = 1
    self.cpus[cpu_id_2].load_to_register(data, 0)  # Load data into register 0 of the receiving CPU

def global_memory_access(self, cpu_id, data, location):
    # Optimized global memory access
    self.global_memory[location] = data
    return self.global_memory[location]

def perform_group_tasks(self):
    # Control Group: Manage tasks and resources
    for cpu in self.groups['control']:
        # Logic for centralized control
        pass

    # Arithmetic Group: Perform basic arithmetic operations
    for cpu in self.groups['arithmetic']:
        self.execute_cpu_operation(cpu.id, 'add', 0, 1)  # Example operation

    # Tensor Group: Handle tensor operations
    for cpu in self.groups['tensor']:
        self.tensor_cpu_operation(cpu.id, 0, 1)

    # Memory Group: Manage memory access and storage
    for cpu in self.groups['memory']:
        self.global_memory_access(cpu.id, np.random.rand(2, 2), (cpu.id, cpu.id))

    # Communication Group: Facilitate communication between CPUs
    for cpu_id_1 in range(3200, 4000):
        for cpu_id_2 in range(3200, 4000):
            if cpu_id_1 != cpu_id_2:
                self.communicate(cpu_id_1, cpu_id_2, np.random.rand(2, 2))

    # Optimization Group: Perform optimization tasks
    for cpu in self.groups['optimization']:
        self.optimize_cpu_operation(cpu.id, np.random.rand(2, 2))

    # Data Processing Group: Handle data processing and transformation
    for cpu in self.groups['data_processing']:
        transformed_data = fourier_transform(np.random.rand(2, 2))
        cpu.load_to_register(transformed_data, 0)

    # Specialized Computation

Code Incomplete

Startonix commented 5 months ago

elif group_name == 'specialized_computation': krull_dim, eigen_data = self.optimize_cpu_operation(cpu.id, np.random.rand(2, 2)) cpu.load_to_register(eigen_data[1], 0) # Store eigenvectors elif group_name == 'tpu':

Placeholder for TPU-specific tasks

                pass
            elif group_name == 'lpu':
                # Placeholder for LPU-specific tasks
                pass
            elif group_name == 'gpu':
                # Placeholder for GPU-specific tasks
                pass
            # Additional group-specific logic can be added here

Example Usage

cyclops64 = Cyclops64()

Load data to CPU registers

cyclops64.load_to_cpu_register(0, np.array([[1, 2], [3, 4]]), 0) cyclops64.load_to_cpu_register(1, np.array([[5, 6], [7, 8]]), 0)

Perform group-specific tasks

cyclops64.perform_group_tasks()