SteamerLee / MASA

MASA: Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management.
Apache License 2.0
24 stars 4 forks source link

CBF Issue #9

Open lrhgogogo opened 2 weeks ago

lrhgogogo commented 2 weeks ago

image image

不好意思再次打扰您,我想向您请教关于controllers.py中cbf_opt()的问题,当设置gamma=0.7<1时,当前风险剩余裕度last_h_risk越大,反而会使得安全阈值socp_d越小,是不是有一点神奇?

Please feel free to respond at your convenience. I truly appreciate your valuable time. Thank you!

SteamerLee commented 2 weeks ago

您好,gamma的取值范围是[0, 1], 当gamma越大(接近1)时,对于风险的约束会变小,即安全阈值更大,可接受更大的风险,并且当gamma=1时会退化为普通的风险约束。另一方面,当gamma越小(接近0)时,风险约束会变严格,对风险要求更高。这部分推导是与control theory中的barrier function有关。谢谢!