Closed taheranjary closed 2 years ago
Hi, I am facing the same issue as @taheranjary in reproducing the results.
@OceanPang Can you please clarify this?
The discrepancy is due to the index of the categories being changed. The ground truth annotation file was probably updated such that the categories are now not aligned. I was able to reproduce the results after mapping the old categories:
CLASSES = ('pedestrian', 'rider', 'car', 'bus', 'truck', 'bicycle', 'motorcycle', 'train')
to the new categories:
CLASSES = ('pedestrian', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle')
Notice the order of bus
and truck
as well as bicycle
and train
are changed.
Reproduced results for reference: Test set
MOTA MOTP IDF1 FP FN IDSw MT PT ML FM
----------------------------------------------------------------------------
pedestrian 49.3 78.0 59.1 15232 35594 2396 2243 2155 1169 4460
rider 37.7 76.5 55.0 522 3597 30 42 107 116 211
car 71.4 84.6 76.7 52133 119959 7981 14688 6365 2828 12414
truck 32.9 84.9 53.6 6109 26818 270 227 545 513 1477
bus 31.4 85.6 55.4 3384 6880 80 82 122 139 555
train 2.8 59.9 16.7 35 454 0 0 1 10 8
motorcycle 28.4 77.5 50.4 446 2274 15 23 90 95 70
bicycle 31.6 75.5 51.8 998 4485 50 101 189 191 211
----------------------------------------------------------------------------
human 48.6 77.9 58.9 15754 39191 2426 2285 2262 1285 4671
vehicle 67.7 84.7 74.8 61661 154111 8331 14997 7033 3490 14454
bike 30.6 76.1 51.4 1444 6759 65 124 279 286 281
----------------------------------------------------------------------------
AVERAGE 35.7 77.8 52.3 78859 200061 10822 17406 9574 5061 19406
OVERALL 64.5 83.8 72.4 78859 200061 10822 17406 9574 5061 19406
Val set
MOTA MOTP IDF1 FP FN IDSw MT PT ML FM
--------------------------------------------------------------------------
pedestrian 49.3 78.4 59.9 8743 18795 1419 1460 1360 670 2471
rider 35.0 77.5 51.5 144 1492 15 11 55 65 85
car 69.8 84.6 75.0 27255 71443 4519 7451 3786 1926 7058
truck 39.2 85.4 58.2 2934 13593 144 132 317 276 855
bus 40.8 86.2 62.3 1588 3738 52 57 90 46 336
train 0.0 nan 0.0 0 308 0 0 0 6 0
motorcycle 28.8 76.9 56.0 170 467 5 7 18 19 28
bicycle 30.0 76.2 50.1 521 2336 39 51 98 95 125
--------------------------------------------------------------------------
human 48.7 78.4 59.6 8887 20287 1434 1471 1415 735 2556
vehicle 66.8 84.7 73.6 31777 89082 4715 7640 4193 2254 8249
bike 29.8 76.3 51.2 691 2803 44 58 116 114 153
--------------------------------------------------------------------------
AVERAGE 36.6 70.7 51.6 41355 112172 6193 9169 5724 3103 10958
OVERALL 63.9 83.9 71.5 41355 112172 6193 9169 5724 3103 10958
Hi, Modify the CLASSES of BDDVideodataset to new categories CLASSES = ('pedestrian', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle'), but the result is still the same as the old one? Please explain in detail how to operate or update the new code?
I was able to reproduce the results in the paper (eval set) by remapping the category_ids in coco-formatted label files as explained in the previous post. You might be facing issues because the pre-trained model was trained with different category_id mapping and might not match the new category_id mapping in BDDVideodataset.
@thomasehuang how do I get the labels for the test set of BDD 100k MOT? I can't seem to find it in the official website.
The discrepancy is due to the index of the categories being changed. The ground truth annotation file was probably updated such that the categories are now not aligned. I was able to reproduce the results after mapping the old categories:
CLASSES = ('pedestrian', 'rider', 'car', 'bus', 'truck', 'bicycle', 'motorcycle', 'train')
to the new categories:CLASSES = ('pedestrian', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle')
Notice the order ofbus
andtruck
as well asbicycle
andtrain
are changed.Reproduced results for reference: Test set
MOTA MOTP IDF1 FP FN IDSw MT PT ML FM ---------------------------------------------------------------------------- pedestrian 49.3 78.0 59.1 15232 35594 2396 2243 2155 1169 4460 rider 37.7 76.5 55.0 522 3597 30 42 107 116 211 car 71.4 84.6 76.7 52133 119959 7981 14688 6365 2828 12414 truck 32.9 84.9 53.6 6109 26818 270 227 545 513 1477 bus 31.4 85.6 55.4 3384 6880 80 82 122 139 555 train 2.8 59.9 16.7 35 454 0 0 1 10 8 motorcycle 28.4 77.5 50.4 446 2274 15 23 90 95 70 bicycle 31.6 75.5 51.8 998 4485 50 101 189 191 211 ---------------------------------------------------------------------------- human 48.6 77.9 58.9 15754 39191 2426 2285 2262 1285 4671 vehicle 67.7 84.7 74.8 61661 154111 8331 14997 7033 3490 14454 bike 30.6 76.1 51.4 1444 6759 65 124 279 286 281 ---------------------------------------------------------------------------- AVERAGE 35.7 77.8 52.3 78859 200061 10822 17406 9574 5061 19406 OVERALL 64.5 83.8 72.4 78859 200061 10822 17406 9574 5061 19406
Val set
MOTA MOTP IDF1 FP FN IDSw MT PT ML FM -------------------------------------------------------------------------- pedestrian 49.3 78.4 59.9 8743 18795 1419 1460 1360 670 2471 rider 35.0 77.5 51.5 144 1492 15 11 55 65 85 car 69.8 84.6 75.0 27255 71443 4519 7451 3786 1926 7058 truck 39.2 85.4 58.2 2934 13593 144 132 317 276 855 bus 40.8 86.2 62.3 1588 3738 52 57 90 46 336 train 0.0 nan 0.0 0 308 0 0 0 6 0 motorcycle 28.8 76.9 56.0 170 467 5 7 18 19 28 bicycle 30.0 76.2 50.1 521 2336 39 51 98 95 125 -------------------------------------------------------------------------- human 48.7 78.4 59.6 8887 20287 1434 1471 1415 735 2556 vehicle 66.8 84.7 73.6 31777 89082 4715 7640 4193 2254 8249 bike 29.8 76.3 51.2 691 2803 44 58 116 114 153 -------------------------------------------------------------------------- AVERAGE 36.6 70.7 51.6 41355 112172 6193 9169 5724 3103 10958 OVERALL 63.9 83.9 71.5 41355 112172 6193 9169 5724 3103 10958
@joemathai joemathai, Please explain in detail how to operate? Thanks!!
A simple python script like this can be used to remap the box_track_train_cocofmt.json and box_track_val_cocofmt.json to the category_ids described earlier.
@joemathai Unfortunately the test labels are not publicly available.
@joemathai You can get evaluation results on the test set here https://eval.ai/web/challenges/challenge-page/1259/overview
Hi there.
I ran the pre-trained BDD100K model on the tracking validation set and the resulting MOTA IDF1 scores are lower than what QDTrack claim: MOTA: 54.5, IDF1: 66.7 vs your MOTA: 63.5, IDF1 71.5.
Kindly verify if this is the case for you or if there are any missing settings.
I followed the instructions and ran this command: sh ./tools/dist_test.sh ./configs/bdd100k/qdtrack-frcnn_r50_fpn_12e_bdd100k.py ./ckpts/mmdet/qdtrack_frcnn_r50_fpn_12e_bdd100k_13328aed.pth 2 --out exp.pkl --eval track