Open zhang-ff opened 3 years ago
在u_net网络中使用到了 for idx in range(num_blocks): x2= resblock(x2, outchannel=channel*4, name='block{}'.format(idx)) 这里循环调用resblock,在resblock中又做了两次卷积,我把resblock中每一次卷积后的结果进行了输出,显示为AddBias,但是具体的作用还是不太清楚。恳请各位指导。 def resblock(inputs, out_channel=32, name='resblock'):
with tf.variable_scope(name): x = slim.convolution2d(inputs, out_channel, [3, 3], activation_fn=None, scope='conv1') x= tf.nn.leaky_relu(x) x = slim.convolution2d(x, out_channel, [3, 3], activation_fn=None, scope='conv2') return x + inputs
在u_net网络中使用到了 for idx in range(num_blocks): x2= resblock(x2, outchannel=channel*4, name='block{}'.format(idx)) 这里循环调用resblock,在resblock中又做了两次卷积,我把resblock中每一次卷积后的结果进行了输出,显示为AddBias,但是具体的作用还是不太清楚。恳请各位指导。 def resblock(inputs, out_channel=32, name='resblock'):