Hi, I am wondering if you mind sharing compositional-bert-large-uncased model needed for this watermark algorithm? I found this model card but it seems like I have to train it from scratch?
Also, when I set the config file for SIR to the following
File "/MarkLLM/watermark/sir/sir.py", line 221, in generate_watermarked_text
encoded_watermarked_text = generate_with_watermark(**encoded_prompt)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/conda/2024-04-29/mconda3/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/conda/2024-04-29/lib/python3.11/site-packages/transformers/generation/utils.py", line 2024, in generate
result = self._sample(
^^^^^^^^^^^^^
File "/conda/2024-04-29/lib/python3.11/site-packages/transformers/generation/utils.py", line 2992, in _sample
next_token_scores = logits_processor(input_ids, next_token_logits)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/conda/2024-04-29/lib/python3.11/site-packages/transformers/generation/logits_process.py", line 98, in __call__
scores = processor(input_ids, scores)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/MarkLLM/watermark/sir/sir.py", line 189, in __call__
scores = self._bias_logits(scores=scores, batched_bias=batched_bias)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/MarkLLM/watermark/sir/sir.py", line 175, in _bias_logits
scores = scores + batched_bias * self.config.delta
~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RuntimeError: The size of tensor a (152064) must match the size of tensor b (50272) at non-singleton dimension 1
There’s no need to train the compositional-bert-large-uncased model, as it is solely used for embedding purposes.
Based on the error message, it appears you are using an LLM for text generation with a vocab_size of 152,604, but you haven't updated the vocab_size parameter in the transformer_config. Additionally, it is advisable to change the mapping_name in the configuration file to align with the vocabulary size.
Hope this helps! If you have any further questions, feel free to ask. 😊
Hi, I am wondering if you mind sharing
compositional-bert-large-uncased
model needed for this watermark algorithm? I found this model card but it seems like I have to train it from scratch?Also, when I set the config file for SIR to the following
I get the following error message:
Thanks!