Open smile-II opened 1 year ago
ChatGLMForConditionalGeneration( (transformer): ChatGLMModel( (embedding): Embedding( (word_embeddings): Embedding(65024, 4096) # [b s h] ) (rotary_pos_emb): RotaryEmbedding() (encoder): GLMTransformer( (layers): ModuleList( (0-27): 28X GLMBlock( (input_layernorm): RMSNorm() (self_attention): SelfAttention( # [b s h] (query_key_value): Linear(in_features=4096, out_features=4608, bias=True) (core_attention): CoreAttention( (attention_dropout): Dropout(p=0.0, inplace=False) ) (dense): Linear(in_features=4096, out_features=4096, bias=False) ) (post_attention_layernorm): RMSNorm() (mlp): MLP( (dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False) (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False) ) ) ) (final_layernorm): RMSNorm() ) (output_layer): Linear(in_features=4096, out_features=65024, bias=False) ) )
这是打印出来的模型结构,论文中说GLM模型是encoder-decoder模型,但是为什么打印出来只有encoder
对模型结构有疑问
正常运行
No response
Is there an existing issue for this?
Current Behavior
ChatGLMForConditionalGeneration( (transformer): ChatGLMModel( (embedding): Embedding( (word_embeddings): Embedding(65024, 4096) # [b s h] ) (rotary_pos_emb): RotaryEmbedding() (encoder): GLMTransformer( (layers): ModuleList( (0-27): 28X GLMBlock( (input_layernorm): RMSNorm() (self_attention): SelfAttention( # [b s h] (query_key_value): Linear(in_features=4096, out_features=4608, bias=True) (core_attention): CoreAttention( (attention_dropout): Dropout(p=0.0, inplace=False) ) (dense): Linear(in_features=4096, out_features=4096, bias=False) ) (post_attention_layernorm): RMSNorm() (mlp): MLP( (dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False) (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False) ) ) ) (final_layernorm): RMSNorm() ) (output_layer): Linear(in_features=4096, out_features=65024, bias=False) ) )
Expected Behavior
这是打印出来的模型结构,论文中说GLM模型是encoder-decoder模型,但是为什么打印出来只有encoder
Steps To Reproduce
对模型结构有疑问
Environment
Anything else?
No response