Open JWargrave opened 6 days ago
pip list结果如下(都已满足requirements.txt和sat/requirements.txt):
requirements.txt
sat/requirements.txt
Package Version ------------------------ ----------- accelerate 1.1.1 aiofiles 23.2.1 aiohappyeyeballs 2.4.3 aiohttp 3.10.10 aiosignal 1.3.1 annotated-types 0.7.0 antlr4-python3-runtime 4.9.3 anyio 4.6.2.post1 attrs 24.2.0 beartype 0.19.0 boto3 1.35.57 botocore 1.35.57 braceexpand 0.1.7 certifi 2024.8.30 charset-normalizer 3.4.0 click 8.1.7 cpm-kernels 1.0.11 datasets 2.14.4 decorator 4.4.2 decord 0.6.0 deepspeed 0.15.4 diffusers 0.31.0 dill 0.3.7 distro 1.9.0 docker-pycreds 0.4.0 einops 0.8.0 fastapi 0.115.4 ffmpy 0.4.0 filelock 3.16.1 frozenlist 1.5.0 fsspec 2024.10.0 gitdb 4.0.11 GitPython 3.1.43 gradio 5.5.0 gradio_client 1.4.2 h11 0.14.0 hjson 3.1.0 httpcore 1.0.6 httpx 0.27.2 huggingface-hub 0.26.2 idna 3.10 imageio 2.36.0 imageio-ffmpeg 0.5.1 importlib_metadata 8.5.0 Jinja2 3.1.4 jiter 0.7.0 jmespath 1.0.1 kornia 0.7.4 kornia_rs 0.1.7 lightning-utilities 0.11.8 markdown-it-py 3.0.0 MarkupSafe 2.1.5 mdurl 0.1.2 moviepy 1.0.3 mpmath 1.3.0 msgpack 1.1.0 multidict 6.1.0 multiprocess 0.70.15 networkx 3.4.2 ninja 1.11.1.1 numpy 1.26.0 nvidia-cublas-cu12 12.4.5.8 nvidia-cuda-cupti-cu12 12.4.127 nvidia-cuda-nvrtc-cu12 12.4.127 nvidia-cuda-runtime-cu12 12.4.127 nvidia-cudnn-cu12 9.1.0.70 nvidia-cufft-cu12 11.2.1.3 nvidia-curand-cu12 10.3.5.147 nvidia-cusolver-cu12 11.6.1.9 nvidia-cusparse-cu12 12.3.1.170 nvidia-nccl-cu12 2.21.5 nvidia-nvjitlink-cu12 12.4.127 nvidia-nvtx-cu12 12.4.127 omegaconf 2.3.0 openai 1.54.3 orjson 3.10.11 packaging 24.2 pandas 2.2.3 pillow 11.0.0 pip 24.2 platformdirs 4.3.6 proglog 0.1.10 propcache 0.2.0 protobuf 5.28.3 psutil 6.1.0 py-cpuinfo 9.0.0 pyarrow 18.0.0 pydantic 2.9.2 pydantic_core 2.23.4 pydub 0.25.1 Pygments 2.18.0 python-dateutil 2.9.0.post0 python-multipart 0.0.12 pytorch-lightning 2.4.0 pytz 2024.2 PyYAML 6.0.2 regex 2024.11.6 requests 2.32.3 rich 13.9.4 ruff 0.7.3 s3transfer 0.10.3 safehttpx 0.1.1 safetensors 0.4.5 scikit-video 1.1.11 scipy 1.14.1 semantic-version 2.10.0 sentencepiece 0.2.0 sentry-sdk 2.18.0 setproctitle 1.3.3 setuptools 75.1.0 shellingham 1.5.4 six 1.16.0 smmap 5.0.1 sniffio 1.3.1 starlette 0.41.2 SwissArmyTransformer 0.4.12 sympy 1.13.1 tensorboardX 2.6.2.2 tokenizers 0.20.3 tomlkit 0.12.0 torch 2.5.1 torchmetrics 1.5.2 torchvision 0.20.1 tqdm 4.67.0 transformers 4.46.2 triton 3.1.0 typer 0.13.0 typing_extensions 4.12.2 tzdata 2024.2 urllib3 2.2.3 uvicorn 0.32.0 wandb 0.18.6 webdataset 0.2.100 websockets 12.0 wheel 0.44.0 xxhash 3.5.0 yarl 1.17.1 zipp 3.21.0
系统信息如下(由python -m torch.utils.collect_env给出):
python -m torch.utils.collect_env
<frozen runpy>:128: RuntimeWarning: 'torch.utils.collect_env' found in sys.modules after import of package 'torch.utils', but prior to execution of 'torch.utils.collect_env'; this may result in unpredictable behaviour Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-78-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H800 GPU 1: NVIDIA H800 GPU 2: NVIDIA H800 GPU 3: NVIDIA H800 GPU 4: NVIDIA H800 GPU 5: NVIDIA H800 GPU 6: NVIDIA H800 GPU 7: NVIDIA H800 Nvidia driver version: 535.104.12 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 384 On-line CPU(s) list: 0-383 Vendor ID: AuthenticAMD Model name: AMD EPYC 9654 96-Core Processor CPU family: 25 Model: 17 Thread(s) per core: 2 Core(s) per socket: 96 Socket(s): 2 Stepping: 1 Frequency boost: enabled CPU max MHz: 3707.8120 CPU min MHz: 1500.0000 BogoMIPS: 4799.94 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d Virtualization: AMD-V L1d cache: 6 MiB (192 instances) L1i cache: 6 MiB (192 instances) L2 cache: 192 MiB (192 instances) L3 cache: 768 MiB (24 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-95,192-287 NUMA node1 CPU(s): 96-191,288-383 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.0 [pip3] pytorch-lightning==2.4.0 [pip3] torch==2.5.1 [pip3] torchmetrics==1.5.2 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [conda] numpy 1.26.0 pypi_0 pypi [conda] pytorch-lightning 2.4.0 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] torchmetrics 1.5.2 pypi_0 pypi [conda] torchvision 0.20.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi
首先修改了sat/configs/sft.yaml,如下所示(主要改了load: CogVideoX1.5-5B-SAT/transformer_i2v,train_micro_batch_size_per_gpu: 1,gradient_accumulation_steps: 2,video_size: [ 480, 720 ]),我想训image-to-video:
sat/configs/sft.yaml
load: CogVideoX1.5-5B-SAT/transformer_i2v
train_micro_batch_size_per_gpu: 1
gradient_accumulation_steps: 2
video_size: [ 480, 720 ]
args: checkpoint_activations: True # using gradient checkpointing model_parallel_size: 1 experiment_name: full_storyboard mode: finetune load: /suqinzs/jwargrave/CogVideo-293/sat/pretrained_weights/CogVideoX1.5-5B-SAT/transformer_i2v no_load_rng: True train_iters: 1000 # Suggest more than 1000 For Lora and SFT For 500 is enough eval_iters: 1 eval_interval: 100 eval_batch_size: 1 save: ckpts_CogVideoX1.5-5B-SAT_i2v_full save_interval: 500 log_interval: 20 train_data: [ "/suqinzs/jwargrave/CogVideo-293/sat/storyboard_data_for_cog" ] # Train data path valid_data: [ "/suqinzs/jwargrave/CogVideo-293/sat/storyboard_data_for_cog" ] # Validation data path, can be the same as train_data(not recommended) split: 1,0,0 num_workers: 8 force_train: True only_log_video_latents: True data: target: data_video.SFTDataset params: video_size: [ 480, 720 ] fps: 8 max_num_frames: 49 skip_frms_num: 3. deepspeed: # Minimum for 16 videos per batch for ALL GPUs, This setting is for 8 x A100 GPUs train_micro_batch_size_per_gpu: 1 gradient_accumulation_steps: 2 steps_per_print: 50 gradient_clipping: 0.1 zero_optimization: stage: 2 cpu_offload: false contiguous_gradients: false overlap_comm: true reduce_scatter: true reduce_bucket_size: 1000000000 allgather_bucket_size: 1000000000 load_from_fp32_weights: false zero_allow_untested_optimizer: true bf16: enabled: True # For CogVideoX-2B Turn to False and For CogVideoX-5B Turn to True fp16: enabled: False # For CogVideoX-2B Turn to True and For CogVideoX-5B Turn to False loss_scale: 0 loss_scale_window: 400 hysteresis: 2 min_loss_scale: 1 optimizer: type: sat.ops.FusedEmaAdam params: lr: 0.00001 # Between 1E-3 and 5E-4 For Lora and 1E-5 For SFT betas: [ 0.9, 0.95 ] eps: 1e-8 weight_decay: 1e-4 activation_checkpointing: partition_activations: false contiguous_memory_optimization: false wall_clock_breakdown: false
数据集路径storyboard_data_for_cog已经按照这里所说的整理好了,每个txt文件都只有一行,是对应视频的caption,一共大概7w多个视频,视频长短不一,有几百帧的,也有几帧的。
storyboard_data_for_cog
txt
然后修改了sat/finetune_multi_gpus.sh,如下所示(单机8卡训练):
sat/finetune_multi_gpus.sh
#! /bin/bash export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" echo "RUN on $(hostname), CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" run_cmd="PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox1.5_5b_i2v.yaml configs/sft.yaml --seed $RANDOM" echo ${run_cmd} eval ${run_cmd} echo "DONE on `hostname`"
然后运行bash finetune_multi_gpus.sh,遇到了如下的报错:
bash finetune_multi_gpus.sh
[rank2]: Traceback (most recent call last): [rank2]: File "/suqinzs/jwargrave/CogVideo-293/sat/train_video.py", line 223, in <module> [rank2]: training_main( [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/sat/training/deepspeed_training.py", line 157, in training_main [rank2]: iteration, skipped = train(model, optimizer, [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/sat/training/deepspeed_training.py", line 359, in train [rank2]: lm_loss, skipped_iter, metrics = train_step(train_data_iterator, [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/sat/training/deepspeed_training.py", line 443, in train_step [rank2]: forward_ret = forward_step(data_iterator, model, args, timers, **kwargs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/jwargrave/CogVideo-293/sat/train_video.py", line 195, in forward_step [rank2]: loss, loss_dict = model.shared_step(batch) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/jwargrave/CogVideo-293/sat/diffusion_video.py", line 170, in shared_step [rank2]: loss, loss_dict = self(x, batch) [rank2]: ^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl [rank2]: return self._call_impl(*args, **kwargs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl [rank2]: return forward_call(*args, **kwargs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/jwargrave/CogVideo-293/sat/diffusion_video.py", line 130, in forward [rank2]: loss = self.loss_fn(self.model, self.denoiser, self.conditioner, x, batch) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/jwargrave/CogVideo-293/sat/sgm/modules/diffusionmodules/loss.py", line 106, in __call__ [rank2]: model_output = denoiser(network, noised_input, alphas_cumprod_sqrt, cond, **additional_model_inputs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl [rank2]: return self._call_impl(*args, **kwargs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl [rank2]: return forward_call(*args, **kwargs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/jwargrave/CogVideo-293/sat/sgm/modules/diffusionmodules/denoiser.py", line 38, in forward [rank2]: return network(input * c_in, c_noise, cond, **additional_model_inputs) * c_out + input * c_skip [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl [rank2]: return self._call_impl(*args, **kwargs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl [rank2]: return forward_call(*args, **kwargs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/jwargrave/CogVideo-293/sat/sgm/modules/diffusionmodules/wrappers.py", line 35, in forward [rank2]: return self.diffusion_model( [rank2]: ^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl [rank2]: return self._call_impl(*args, **kwargs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/anaconda3/envs/zym-cog/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl [rank2]: return forward_call(*args, **kwargs) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/suqinzs/jwargrave/CogVideo-293/sat/dit_video_concat.py", line 838, in forward [rank2]: ofs_emb = timestep_embedding(kwargs["ofs"], self.ofs_embed_dim, repeat_only=False, dtype=self.dtype) [rank2]: ~~~~~~^^^^^^^ [rank2]: KeyError: 'ofs'
请问这个问题要如何解决?
期望能够解决KeyError,顺利全微调CogVideoX1.5-5B-SAT
我和同学也都遇到了同样的问题,期待一下解决方案
System Info / 系統信息
pip list结果如下(都已满足
requirements.txt
和sat/requirements.txt
):系统信息如下(由
python -m torch.utils.collect_env
给出):Information / 问题信息
Reproduction / 复现过程
首先修改了
sat/configs/sft.yaml
,如下所示(主要改了load: CogVideoX1.5-5B-SAT/transformer_i2v
,train_micro_batch_size_per_gpu: 1
,gradient_accumulation_steps: 2
,video_size: [ 480, 720 ]
),我想训image-to-video:数据集路径
storyboard_data_for_cog
已经按照这里所说的整理好了,每个txt
文件都只有一行,是对应视频的caption,一共大概7w多个视频,视频长短不一,有几百帧的,也有几帧的。然后修改了
sat/finetune_multi_gpus.sh
,如下所示(单机8卡训练):然后运行
bash finetune_multi_gpus.sh
,遇到了如下的报错:请问这个问题要如何解决?
Expected behavior / 期待表现
期望能够解决KeyError,顺利全微调CogVideoX1.5-5B-SAT