Open hda-xian opened 4 months ago
because they have params_to_optimize = adapter.parameters()
, and only optimise the adapter's params. But disabling unet grads reduces the memory consumption, they just forgot it
这是来自QQ邮箱的假期自动回复邮件。你好,我最近正在休假中,无法亲自回复你的邮件。我将在假期结束后,尽快给你回复。
Why are the UNet parameters frozen during training for SD1v5, but not for SDXL? the haggingface training sdxl script sets " Unet.train() "
* huggingface train sdxl ***** vae.requiresgrad(False) text_encoder_one.requiresgrad(False) text_encoder_two.requiresgrad(False) t2iadapter.train() unet.train()
***Tencent ARC train sd1v5 ** model.cuda() model.eval() # model is contain all models vae ,cliptext return model
***Tencent ARC train sdxl ** vae.requiresgrad(False) text_encoder_one.requiresgrad(False) text_encoder_two.requiresgrad(False) -> the Unet does not set no grad means Unet need grad