The second command errors with the message below, this has been tested with an environment created on June 3, 2024:
---------------------------------------------------------------------------
OperationalError Traceback (most recent call last)
File /opt/conda/lib/python3.9/site-packages/teradataml/analytics/analytic_function_executor.py:191, in _AnlyticFunctionExecutor._execute_query(self, persist, volatile)
190 try:
--> 191 __execute(*__execute_params)
193 # List stores names of the functions that will produce "output" attribute
194 # when more than one results are expected.
File /opt/conda/lib/python3.9/site-packages/teradataml/common/utils.py:793, in UtilFuncs._create_view(view_name, query)
792 try:
--> 793 UtilFuncs._execute_ddl_statement(crt_view)
794 return True
File /opt/conda/lib/python3.9/site-packages/teradataml/common/utils.py:647, in UtilFuncs._execute_ddl_statement(ddl_statement)
646 cursor = conn.cursor()
--> 647 cursor.execute(ddl_statement)
649 # Warnings are displayed when the "suppress_vantage_runtime_warnings" attribute is set to 'False'.
File /opt/conda/lib/python3.9/site-packages/teradatasql/__init__.py:686, in TeradataCursor.execute(self, sOperation, params, ignoreErrors)
685 if not params:
--> 686 self.executemany (sOperation, None, ignoreErrors)
688 elif type (params [0]) in [list, tuple]:
689 # Excerpt from PEP 249 DBAPI documentation:
690 # The parameters may also be specified as list of tuples to e.g. insert multiple rows in a single
691 # operation, but this kind of usage is deprecated: .executemany() should be used instead.
File /opt/conda/lib/python3.9/site-packages/teradatasql/__init__.py:933, in TeradataCursor.executemany(self, sOperation, seqOfParams, ignoreErrors)
931 return
--> 933 raise OperationalError (sErr)
935 if self.connection.bTimingLog:
OperationalError: [Version 17.20.0.0] [Session 1038] [Teradata Database] [Error 7810] Error in function TD_XGBoostPredict: With ModelTable as Classification, ModelType argument cannot be set to Regression.
at gosqldriver/teradatasql.formatError ErrorUtil.go:88
at gosqldriver/teradatasql.(*teradataConnection).formatDatabaseError ErrorUtil.go:216
at gosqldriver/teradatasql.(*teradataConnection).makeChainedDatabaseError ErrorUtil.go:232
at gosqldriver/teradatasql.(*teradataConnection).processErrorParcel TeradataConnection.go:803
at gosqldriver/teradatasql.(*TeradataRows).processResponseBundle TeradataRows.go:2229
at gosqldriver/teradatasql.(*TeradataRows).executeSQLRequest TeradataRows.go:814
at gosqldriver/teradatasql.newTeradataRows TeradataRows.go:673
at gosqldriver/teradatasql.(*teradataStatement).QueryContext TeradataStatement.go:122
at gosqldriver/teradatasql.(*teradataConnection).QueryContext TeradataConnection.go:1304
at database/sql.ctxDriverQuery ctxutil.go:48
at database/sql.(*DB).queryDC.func1 sql.go:1759
at database/sql.withLock sql.go:3437
at database/sql.(*DB).queryDC sql.go:1754
at database/sql.(*Conn).QueryContext sql.go:2013
at main.goCreateRows goside.go:666
at _cgoexp_b901301bef36_goCreateRows _cgo_gotypes.go:340
at runtime.cgocallbackg1 cgocall.go:314
at runtime.cgocallbackg cgocall.go:233
at runtime.cgocallback asm_amd64.s:971
at runtime.goexit asm_amd64.s:1571
During handling of the above exception, another exception occurred:
TeradataMlException Traceback (most recent call last)
Input In [67], in <cell line: 1>()
----> 1 XGBoostPredict_out = XGBoostPredict(
2 newdata = df_test,
3 object = XGBoost_model.result,
4 id_column = 'CustomerID',
5 accumulate = 'Churn',
6 model_type = 'CLASSIFICATION',
7 object_order_column = ['task_index', 'tree_num', 'iter', 'class_num', 'tree_order'],
8 output_responses = ['0', '1'],
9 output_prob = True
10 )
File /opt/conda/lib/python3.9/site-packages/teradataml/analytics/sqle/__init__.py:110, in <lambda>(self, **kwargs)
108 for assoc_cl in _get_associated_parent_classes(func):
109 _c = _c + (assoc_cl, )
--> 110 globals()[func] = type("{}".format(func), _c, {"__init__": lambda self, **kwargs: _common_init(self, 'sqle',
111 **kwargs), "__doc__": _AnalyticFunction.__doc__})
File /opt/conda/lib/python3.9/site-packages/teradataml/analytics/meta_class.py:188, in _common_init(self, function_type, **kwargs)
186 if function_type == 'sqle':
187 from teradataml.analytics.analytic_function_executor import _SQLEFunctionExecutor
--> 188 self.obj = _SQLEFunctionExecutor(self.__class__.__name__)._execute_function(**kwargs)
189 elif function_type == 'uaf':
190 from teradataml.analytics.analytic_function_executor import _UAFFunctionExecutor
File /opt/conda/lib/python3.9/site-packages/teradataml/analytics/analytic_function_executor.py:711, in _AnlyticFunctionExecutor._execute_function(self, skip_input_arg_processing, skip_output_arg_processing, skip_other_arg_processing, skip_func_output_processing, skip_dyn_cls_processing, **kwargs)
708 if display.print_sqlmr_query:
709 print(self.sqlmr_query)
--> 711 self._execute_query(persist, volatile)
713 if not skip_func_output_processing:
714 self._process_function_output(**kwargs)
File /opt/conda/lib/python3.9/site-packages/teradataml/analytics/analytic_function_executor.py:210, in _AnlyticFunctionExecutor._execute_query(self, persist, volatile)
207 print("{} data stored in table '{}'".format(output_attribute, table_name))
209 except Exception as emsg:
--> 210 raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)),
211 MessageCodes.TDMLDF_EXEC_SQL_FAILED)
TeradataMlException: [Teradata][teradataml](TDML_2102) Failed to execute SQL: '[Version 17.20.0.0] [Session 1038] [Teradata Database] [Error 7810] Error in function TD_XGBoostPredict: With ModelTable as Classification, ModelType argument cannot be set to Regression.
at gosqldriver/teradatasql.formatError ErrorUtil.go:88
at gosqldriver/teradatasql.(*teradataConnection).formatDatabaseError ErrorUtil.go:216
at gosqldriver/teradatasql.(*teradataConnection).makeChainedDatabaseError ErrorUtil.go:232
at gosqldriver/teradatasql.(*teradataConnection).processErrorParcel TeradataConnection.go:803
at gosqldriver/teradatasql.(*TeradataRows).processResponseBundle TeradataRows.go:2229
at gosqldriver/teradatasql.(*TeradataRows).executeSQLRequest TeradataRows.go:814
at gosqldriver/teradatasql.newTeradataRows TeradataRows.go:673
at gosqldriver/teradatasql.(*teradataStatement).QueryContext TeradataStatement.go:122
at gosqldriver/teradatasql.(*teradataConnection).QueryContext TeradataConnection.go:1304
at database/sql.ctxDriverQuery ctxutil.go:48
at database/sql.(*DB).queryDC.func1 sql.go:1759
at database/sql.withLock sql.go:3437
at database/sql.(*DB).queryDC sql.go:1754
at database/sql.(*Conn).QueryContext sql.go:2013
at main.goCreateRows goside.go:666
at _cgoexp_b901301bef36_goCreateRows _cgo_gotypes.go:340
at runtime.cgocallbackg1 cgocall.go:314
at runtime.cgocallbackg cgocall.go:233
at runtime.cgocallback asm_amd64.s:971
at runtime.goexit asm_amd64.s:1571'
The notebook performs a classification through XGBoost. However though the relevant model definition cells appear correct:
The second command errors with the message below, this has been tested with an environment created on June 3, 2024: