Terraqueing / ChatQuantum

: A platform integrating IoT, AI, advanced algorithms, and quantum computing to transform key sectors, promote sustainability, and improve quality of life.
MIT License
1 stars 0 forks source link

Script #5

Open AmePelliccia opened 3 months ago

AmePelliccia commented 3 months ago

import django.utils.timezone from django.conf import settings from django.db import migrations, models

TIMEZONES = sorted([(tz, tz) for tz in zoneinfo.available_timezones()])

class Migration(migrations.Migration):

dependencies = [
    migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]

operations = [
    migrations.CreateModel(
        name='Attachment',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
            ('counter', models.SmallIntegerField()),
            ('name', models.CharField(max_length=255)),
            ('content_type', models.CharField(max_length=255)),
            ('encoding', models.CharField(max_length=255, null=True)),
            ('size', models.IntegerField()),
            ('content', models.BinaryField()),
        ],
    ),
    migrations.CreateModel(
        name='Email',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
            ('message_id', models.CharField(max_length=255, db_index=True)),
            ('message_id_hash', models.CharField(max_length=255, db_index=True)),
            ('subject', models.CharField(max_length=512, db_index=True)),
            ('content', models.TextField()),
            ('date', models.DateTimeField(db_index=True)),
            ('timezone', models.SmallIntegerField()),
            ('in_reply_to', models.CharField(max_length=255, null=True, blank=True)),
            ('archived_date', models.DateTimeField(auto_now_add=True, db_index=True)),
            ('thread_depth', models.IntegerField(default=0)),
            ('thread_order', models.IntegerField(default=0, db_index=True)),
        ],
    ),
    migrations.CreateModel(
        name='Favorite',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
        ],
    ),
    migrations.CreateModel(
        name='LastView',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
            ('view_date', models.DateTimeField(auto_now=True)),
        ],
    ),
    migrations.CreateModel(
        name='MailingList',
        fields=[
            ('name', models.CharField(max_length=254, serialize=False, primary_key=True)),
            ('display_name', models.CharField(max_length=255)),
            ('description', models.TextField()),
            ('subject_prefix', models.CharField(max_length=255)),
            ('archive_policy', models.IntegerField(default=2, choices=[(0, 'never'), (1, 'private'), (2, 'public')])),
            ('created_at', models.DateTimeField(default=django.utils.timezone.now)),
        ],
    ),
    migrations.CreateModel(
        name='Profile',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
            ('karma', models.IntegerField(default=1)),
            ('timezone', models.CharField(default='', max_length=100, choices=TIMEZONES)),
            ('user', models.OneToOneField(related_name='hyperkitty_profile', to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE)),
        ],
    ),
    migrations.CreateModel(
        name='Sender',
        fields=[
            ('address', models.EmailField(max_length=255, serialize=False, primary_key=True)),
            ('name', models.CharField(max_length=255)),
            ('mailman_id', models.CharField(max_length=255, null=True, db_index=True)),
        ],
    ),
    migrations.CreateModel(
        name='Tag',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
            ('name', models.CharField(unique=True, max_length=255, db_index=True)),
        ],
        options={
            'ordering': ['name'],
        },
    ),
    migrations.CreateModel(
        name='Tagging',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
            ('tag', models.ForeignKey(to='hyperkitty.Tag', on_delete=models.CASCADE)),
            ('thread', models.ForeignKey(to='hyperkitty.Thread', on_delete=models.CASCADE)),
            ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE)),
        ],
    ),
    migrations.CreateModel(
        name='Thread',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
            ('thread_id', models.CharField(max_length=255, db_index=True)),
            ('date_active', models.DateTimeField(default=django.utils.timezone.now, db_index=True)),
            ('category', models.ForeignKey(related_name='threads', to='hyperkitty.ThreadCategory', null=True, on_delete=models.CASCADE)),
            ('mailinglist', models.ForeignKey(related_name='threads', to='hyperkitty.MailingList', on_delete=models.CASCADE)),
        ],
        options={
            'unique_together': {('mailinglist', 'thread_id')},
        },
    ),
    migrations.CreateModel(
        name='ThreadCategory',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
            ('name', models.CharField(unique=True, max_length=255, db_index=True)),
            ('color', models.CharField(max_length=7)),
        ],
        options={
            'verbose_name_plural': 'Thread categories',
        },
    ),
    migrations.CreateModel(
        name='Vote',
        fields=[
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
            ('value', models.SmallIntegerField(db_index=True)),
            ('email', models.ForeignKey(related_name='votes', to='hyperkitty.Email', on_delete=models.CASCADE)),
            ('user', models.ForeignKey(related_name='votes', to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE)),
        ],
        options={
            'unique_together': {('email', 'user')},
        },
    ),
    migrations.CreateModel(
        name='Attachment',
        fields=[
            ('email', models.ForeignKey(related_name='attachments', to='hyperkitty.Email', on_delete=models.CASCADE)),
            ('counter', models.SmallIntegerField()),
            ('name', models.CharField(max_length=255)),
            ('content_type', models.CharField(max_length=255)),
            ('encoding', models.CharField(max_length=255, null=True)),
            ('size', models.IntegerField()),
            ('content', models.BinaryField()),
            ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),
        ],
        options={
            'unique_together': {('email', 'counter')},
        },
    ),
] ## AMPELChain Changelog and ROI Analysis

High ROI Projects

Project 1: Quantum Communication Network (APQ-CUZ-AP-GENSAI-CROSSPULSE-001)

Project 2: Quantum Algorithms for Aerodynamic Design (APQ-CUZ-AP-GENSAI-CROSSPULSE-002)

Project 3: Quantum-Enhanced MRI Technology (APQ-CUZ-AP-GENSAI-CROSSPULSE-003)

Project 4: Quantum Financial Optimization (APQ-CUZ-AP-GENSAI-CROSSPULSE-004)

Project 5: Quantum Environmental Monitoring (APQ-CUZ-AP-GENSAI-CROSSPULSE-005)

Financial Integration and Automated Investment Strategy

Weekly Investment Allocation (June to August):

  1. Ethereum (ETH): €50 per week
  2. Solana (SOL): €50 per week
  3. Binance Coin (BNB): €50 per week
  4. Cardano (ADA): €50 per week
  5. Ripple (XRP): €50 per week
  6. PlayDoge (PLAY): €50 per week

Additional Investment Allocation:

Automation and Validation

Using Fin-AI Algorithms:

Portfolio Diversification

Diversified Investment Strategy:

ESG Bonds and Reinvestment

Reinvestment Plan:

Automation Steps with Flask and PythonAnywhere

  1. Setup Flask Application:
    • Create endpoints for balance checks, price fetching, and order placements.
  2. Deploy on PythonAnywhere:
    • Utilize PythonAnywhere to host the Flask application and ensure it's accessible for automated scripts.

Implementation Example

from flask import Flask, request, jsonify
import requests
import alpaca_trade_api as tradeapi
from config import ALPACA_API_KEY, ALPACA_SECRET_KEY, ALPHA_VANTAGE_API_KEY

app = Flask(__name__)

# Initialize Alpaca API
api = tradeapi.REST(ALPACA_API_KEY, ALPACA_SECRET_KEY, base_url='https://paper-api.alpaca.markets')

def get_balance():
    account = api.get_account()
    balance = {
        'cash': account.cash,
        'portfolio_value': account.portfolio_value,
        'equity': account.equity
    }
    return balance

def get_price(symbol):
    endpoint = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=1min&apikey={ALPHA_VANTAGE_API_KEY}'
    response = requests.get(endpoint)
    data = response.json()
    latest_time = list(data['Time Series (1min)'].keys())[0]
    return float(data['Time Series (1min)'][latest_time]['1. open'])

def place_order(symbol, qty, side='buy'):
    api.submit_order(
        symbol=symbol,
        qty=qty,
        side=side,
        type='market',
        time_in_force='gtc'
    )
    return {'symbol': symbol, 'qty': qty, 'side': side}

@app.route('/balance', methods=['GET'])
def balance():
    balance = get_balance()
    return jsonify(balance)

@app.route('/prices', methods=['GET'])
def prices():
    symbols = request.args.get('symbols').split(',')
    prices = {symbol: get_price(symbol) for symbol in symbols}
    return jsonify(prices)

@app.route('/place-order', methods=['POST'])
def order():
    data = request.json
    symbol = data['symbol']
    qty = data['qty']
    side = data['side']
    order_response = place_order(symbol, qty, side)
    return jsonify(order_response)

if __name__ == '__main__':
    app.run(debug=True)

Deployment on PythonAnywhere

  1. Upload app.py and config.py to PythonAnywhere.
  2. Setup Virtual Environment: mkvirtualenv my-virtualenv --python=python3.8
  3. pip install flask requests alpaca-trade-api
  4. Configure Web App: Set up the web app on PythonAnywhere to run the Flask application.
  5. Monitor and Adjust: Use PythonAnywhere’s logs and monitoring tools to ensure the application runs smoothly.

Conclusion

By integrating your financial situation, leveraging your projects, and using advanced algorithms, you can achieve your financial goals while maintaining a diversified and sustainable investment strategy. This plan ensures you are maximizing returns and reinvesting in ESG bonds, contributing to both personal growth and societal impact.

AmePelliccia commented 3 months ago

AmePellicciaClouds-patch-1

AmePelliccia commented 3 months ago

Executive Summary for Econometrics Analysis

In 2024, an initiative aimed to enhance astrophysics and cosmology capabilities within aircraft systems was undertaken, redefining ATA chapters with new technologies. Each technology was assigned a unique Configuration Management Code (CMC), linked to investigations by Amedeo Pelliccia and integrated using AI and ChatGPT.

New Technologies Overview

Unique CMCs were assigned to each ATA chapter reserved for new technologies, using a hash-based linking function to ensure immutability and uniqueness.

Key Projects and Technologies

NT001 - Enhanced Astrophysics and Cosmology Capabilities

Description: Focuses on advancing astrophysics and cosmology within aviation, developing methodologies for observing cosmic phenomena from aircraft.

Aircraft Platform Definition:

Sensors and Software Specifications:

Resources Needed:

Costs and Coverages:

Benefits for Private Constructors and Airlines:

Partners, Investors, and Clients:

Feasibility Analysis, Risk Capture, and Mitigation

To assess the feasibility, predict risks, and calculate ROI for each project, the following steps will be undertaken:

  1. Feasibility Analysis:

    • Technical Feasibility: Evaluating the integration of new technologies into existing aircraft systems.
    • Operational Feasibility: Assessing the practicality of high-altitude, long-duration flights for scientific observations.
    • Economic Feasibility: Estimating costs and potential financial benefits, including new revenue streams and market differentiation.
  2. Risk Capture and Predictable Risks:

    • Technical Risks: Challenges in adapting high-sensitivity instruments to aircraft environments.
    • Operational Risks: Potential for flight delays or cancellations due to weather or other external factors.
    • Financial Risks: Cost overruns in R&D, unexpected maintenance costs.
  3. Risk Mitigation:

    • Technical Mitigation: Continuous testing and improvement of prototypes, collaboration with experts in astrophysics and aerospace engineering.
    • Operational Mitigation: Detailed planning and scheduling, real-time weather monitoring, contingency plans for flight operations.
    • Financial Mitigation: Budgeting for contingencies, securing diversified funding sources, comprehensive insurance coverage.
  4. ROI Calculation:

    • Direct Returns: Revenue from new services related to astrophysical observations.
    • Indirect Returns: Enhanced brand prestige, technological leadership, contributions to scientific research.
    • Cost-Benefit Analysis: Comparing initial and operational costs with expected returns over time.

Conclusion

By leveraging advanced technologies and strategic partnerships, these projects aim to revolutionize astrophysics and cosmology capabilities within aviation, offering significant benefits for private constructors, airlines, and the broader scientific community. The detailed feasibility analysis, risk capture, mitigation strategies, and ROI calculations ensure a comprehensive approach to managing and maximizing the potential of each initiative.