ThibaultGROUEIX / ChamferDistancePytorch

Chamfer Distance in Pytorch with f-score
MIT License
336 stars 45 forks source link

Due to KITTI Semantic datasets' dimension is 4D(xyz+brightness),I tried to imitate a 4d version of chamfer,can you help me to inspect whether my code is correct? #18

Open LeopoldACC opened 3 years ago

LeopoldACC commented 3 years ago

Hi,@ThibaultGROUEIX Thanks for your work!My 4D version is as below by imitation.

#include <stdio.h>
#include <ATen/ATen.h>

#include <cuda.h>
#include <cuda_runtime.h>

#include <vector>

__global__ void NmDistanceKernel(int b,int n,const float * xyz,int m,const float * xyz2,float * result,int * result_i){
    const int batch=2048;
    __shared__ float buf[batch*4];
    for (int i=blockIdx.x;i<b;i+=gridDim.x){
        for (int k2=0;k2<m;k2+=batch){
            int end_k=min(m,k2+batch)-k2;
            for (int j=threadIdx.x;j<end_k*4;j+=blockDim.x){
                buf[j]=xyz2[(i*m+k2)*4+j];
            }
            __syncthreads();
            for (int j=threadIdx.x+blockIdx.y*blockDim.x;j<n;j+=blockDim.x*gridDim.y){
                float x1=xyz[(i*n+j)*4+0];
                float y1=xyz[(i*n+j)*4+1];
                float r1=xyz[(i*n+j)*4+2];
                float g1=xyz[(i*n+j)*4+3];
                int best_i=0;
                float best=0;
                int end_ka=end_k-(end_k&4);
                if (end_ka==batch){
                    for (int k=0;k<batch;k+=4){
                        {
                            float x2=buf[k*4+0]-x1;
                            float y2=buf[k*4+1]-y1;
                            float r2=buf[k*4+2]-r1;
                            float g2=buf[k*4+3]-g1;
                            float d=x2*x2+y2*y2+r2*r2+g2*g2;
                            if (k==0 || d<best){
                                best=d;
                                best_i=k+k2;
                            }
                        }
                        {
                            float x2=buf[k*4+4]-x1;
                            float y2=buf[k*4+5]-y1;
                            float r2=buf[k*4+6]-r1;
                            float g2=buf[k*4+7]-g1;
                            float d=x2*x2+y2*y2+r2*r2+g2*g2;
                            if (d<best){
                                best=d;
                                best_i=k+k2+1;
                            }
                        }
                        {
                            float x2=buf[k*4+8]-x1;
                            float y2=buf[k*4+9]-y1;
                            float r2=buf[k*4+10]-r1;
                            float g2=buf[k*4+11]-g1;
                            float d=x2*x2+y2*y2+r2*r2+g2*g2;
                            if (d<best){
                                best=d;
                                best_i=k+k2+2;
                            }
                        }
                        {
                            float x2=buf[k*4+12]-x1;
                            float y2=buf[k*4+13]-y1;
                            float r2=buf[k*4+14]-r1;
                            float g2=buf[k*4+15]-g1;
                            float d=x2*x2+y2*y2+r2*r2+g2*g2;
                            if (d<best){
                                best=d;
                                best_i=k+k2+3;
                            }
                        }
                    }
                }else{
                    for (int k=0;k<end_ka;k+=4){
                        {
                            float x2=buf[k*4+0]-x1;
                            float y2=buf[k*4+1]-y1;
                            float r2=buf[k*4+2]-r1;
                            float g2=buf[k*4+3]-g1;
                            float d=x2*x2+y2*y2+r2*r2+g2*g2;
                            if (k==0 || d<best){
                                best=d;
                                best_i=k+k2;
                            }
                        }
                        {
                            float x2=buf[k*4+4]-x1;
                            float y2=buf[k*4+5]-y1;
                            float r2=buf[k*4+6]-r1;
                            float g2=buf[k*4+7]-g1;
                            float d=x2*x2+y2*y2+r2*r2+g2*g2;
                            if (d<best){
                                best=d;
                                best_i=k+k2+1;
                            }
                        }
                        {
                            float x2=buf[k*4+8]-x1;
                            float y2=buf[k*4+9]-y1;
                            float r2=buf[k*4+10]-r1;
                            float g2=buf[k*4+11]-g1;
                            float d=x2*x2+y2*y2+r2*r2+g2*g2;
                            if (d<best){
                                best=d;
                                best_i=k+k2+2;
                            }
                        }
                        {
                            float x2=buf[k*5+12]-x1;
                            float y2=buf[k*5+13]-y1;
                            float r2=buf[k*5+14]-r1;
                            float g2=buf[k*5+15]-g1;
                            float d=x2*x2+y2*y2+r2*r2+g2*g2;
                            if (d<best){
                                best=d;
                                best_i=k+k2+3;
                            }
                        }
                    }
                }
                for (int k=end_ka;k<end_k;k++){
                    float x2=buf[k*5+0]-x1;
                    float y2=buf[k*5+1]-y1;
                    float r2=buf[k*5+2]-r1;
                    float g2=buf[k*5+3]-g1;
                    float d=x2*x2+y2*y2+r2*r2+g2*g2;
                    if (k==0 || d<best){
                        best=d;
                        best_i=k+k2;
                    }
                }
                if (k2==0 || result[(i*n+j)]>best){
                    result[(i*n+j)]=best;
                    result_i[(i*n+j)]=best_i;
                }
            }
            __syncthreads();
        }
    }
}
// int chamfer_cuda_forward(int b,int n,const float * xyz,int m,const float * xyz2,float * result,int * result_i,float * result2,int * result2_i, cudaStream_t stream){
int chamfer_cuda_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist1, at::Tensor dist2, at::Tensor idx1, at::Tensor idx2){

    const auto batch_size = xyz1.size(0);
    const auto n = xyz1.size(1); //num_points point cloud A
    const auto m = xyz2.size(1); //num_points point cloud B

    NmDistanceKernel<<<dim3(32,16,1),512>>>(batch_size, n, xyz1.data<float>(), m, xyz2.data<float>(), dist1.data<float>(), idx1.data<int>());
    NmDistanceKernel<<<dim3(32,16,1),512>>>(batch_size, m, xyz2.data<float>(), n, xyz1.data<float>(), dist2.data<float>(), idx2.data<int>());

    cudaError_t err = cudaGetLastError();
      if (err != cudaSuccess) {
        printf("error in nnd updateOutput: %s\n", cudaGetErrorString(err));
        //THError("aborting");
        return 0;
      }
      return 1;

}
__global__ void NmDistanceGradKernel(int b,int n,const float * xyz1,int m,const float * xyz2,const float * grad_dist1,const int * idx1,float * grad_xyz1,float * grad_xyz2){
    for (int i=blockIdx.x;i<b;i+=gridDim.x){
        for (int j=threadIdx.x+blockIdx.y*blockDim.x;j<n;j+=blockDim.x*gridDim.y){
            float x1=xyz1[(i*n+j)*5+0];
            float y1=xyz1[(i*n+j)*5+1];
            float r1=xyz1[(i*n+j)*5+2];
            float g1=xyz1[(i*n+j)*5+3];
            int j2=idx1[i*n+j];
            float x2=xyz2[(i*m+j2)*5+0];
            float y2=xyz2[(i*m+j2)*5+1];
            float r2=xyz2[(i*m+j2)*5+2];
            float g2=xyz2[(i*m+j2)*5+3];
            float g=grad_dist1[i*n+j]*2;
            atomicAdd(&(grad_xyz1[(i*n+j)*4+0]),g*(x1-x2));
            atomicAdd(&(grad_xyz1[(i*n+j)*4+1]),g*(y1-y2));
            atomicAdd(&(grad_xyz1[(i*n+j)*4+2]),g*(r1-r2));
            atomicAdd(&(grad_xyz1[(i*n+j)*4+3]),g*(g1-g2));
            atomicAdd(&(grad_xyz2[(i*m+j2)*4+0]),-(g*(x1-x2)));
            atomicAdd(&(grad_xyz2[(i*m+j2)*4+1]),-(g*(y1-y2)));
            atomicAdd(&(grad_xyz2[(i*m+j2)*4+2]),-(g*(r1-r2)));
            atomicAdd(&(grad_xyz2[(i*m+j2)*4+3]),-(g*(g1-g2)));
        }
    }
}
// int chamfer_cuda_backward(int b,int n,const float * xyz1,int m,const float * xyz2,const float * grad_dist1,const int * idx1,const float * grad_dist2,const int * idx2,float * grad_xyz1,float * grad_xyz2, cudaStream_t stream){
int chamfer_cuda_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz1, at::Tensor gradxyz2, at::Tensor graddist1, at::Tensor graddist2, at::Tensor idx1, at::Tensor idx2){
    // cudaMemset(grad_xyz1,0,b*n*3*4);
    // cudaMemset(grad_xyz2,0,b*m*3*4);

    const auto batch_size = xyz1.size(0);
    const auto n = xyz1.size(1); //num_points point cloud A
    const auto m = xyz2.size(1); //num_points point cloud B

    NmDistanceGradKernel<<<dim3(1,16,1),256>>>(batch_size,n,xyz1.data<float>(),m,xyz2.data<float>(),graddist1.data<float>(),idx1.data<int>(),gradxyz1.data<float>(),gradxyz2.data<float>());
    NmDistanceGradKernel<<<dim3(1,16,1),256>>>(batch_size,m,xyz2.data<float>(),n,xyz1.data<float>(),graddist2.data<float>(),idx2.data<int>(),gradxyz2.data<float>(),gradxyz1.data<float>());

    cudaError_t err = cudaGetLastError();
      if (err != cudaSuccess) {
        printf("error in nnd get grad: %s\n", cudaGetErrorString(err));
        //THError("aborting");
        return 0;
      }
      return 1;

}

Another question is there any good tutorial or book to learn how to write cuda op?Thanks a lot!

ThibaultGROUEIX commented 3 years ago

Looks good ! Sorry I don't know of any good teaching ressource. You could also have used Chamfer5D or 6D and set a few dimensions to 0 in your tensors. Best regards,