Closed jwang-lilly closed 2 years ago
Hi Jian,
sorry, we don't have that option. You can only choose stratification TRUE / FALSE.
You could write a custom function to do that. Maybe something like this? What question exactly are you trying to answer?
library(cutpointr)
library(tidyverse)
boot_reps <- 10
sample_size = 200
custom_boot <- map_df(1:boot_reps, function(i) {
# Make smaller sample
tempdat <- suicide %>%
sample_n(sample_size)
# Bootstrap that sample
boot_rows <- sample(x = nrow(tempdat),
size = sample_size,
replace = TRUE)
tempdat <- tempdat[boot_rows, ]
cutpointr(data = tempdat,
x = dsi,
class = suicide,
direction = ">=",
pos_class = "yes") %>%
select(optimal_cutpoint, method, sum_sens_spec, AUC, data)
})
custom_boot
#> # A tibble: 10 x 5
#> optimal_cutpoint method sum_sens_spec AUC data
#> <dbl> <chr> <dbl> <dbl> <list>
#> 1 3 maximize_metric 1.81560 0.932624 <tibble [200 x 2]>
#> 2 2 maximize_metric 1.69910 0.870631 <tibble [200 x 2]>
#> 3 2 maximize_metric 1.59453 0.804247 <tibble [200 x 2]>
#> 4 4 maximize_metric 1.68820 0.842655 <tibble [200 x 2]>
#> 5 1 maximize_metric 1.81152 0.915067 <tibble [200 x 2]>
#> 6 4 maximize_metric 1.78694 0.882732 <tibble [200 x 2]>
#> 7 5 maximize_metric 1.45408 0.683036 <tibble [200 x 2]>
#> 8 2 maximize_metric 1.84239 0.958220 <tibble [200 x 2]>
#> 9 4 maximize_metric 1.85897 0.953329 <tibble [200 x 2]>
#> 10 4 maximize_metric 1.89362 0.975621 <tibble [200 x 2]>
Created on 2022-02-26 by the reprex package (v2.0.1)
Excellent Christian. Thanks much! I tried to limit the sample size so the results are fair comparisons with other analyses.
Hi Christian,
Is there any way to specify the sampling size in cutpointr() instead using the same sample size as input data?
Thanks much @Thie1e