TiankaiHang / blog

For self learning
3 stars 0 forks source link

2024 - 10 #9

Open TiankaiHang opened 2 weeks ago

TiankaiHang commented 2 weeks ago

image

flow matching | logSNR 分布

import numpy as np
import matplotlib.pyplot as plt

def sech(x):
    return 1 / np.cosh(x)

def new_function(x):
    return np.exp(x/2) / (2 * (1 + np.exp(x/2))**2)

# 创建 λ 值的范围
lambda_values = np.linspace(-10, 10, 1000)

# 计算两个函数的值
y1 = sech(lambda_values / 2) / (2 * np.pi)
y2 = new_function(lambda_values)

# 创建图表
plt.figure(figsize=(12, 6))
plt.plot(lambda_values, y1, label='sech(λ/2) / (2π)')
plt.plot(lambda_values, y2, label='e^(λ/2) / [2(1 + e^(λ/2))^2]')
plt.title('Comparison of Two Functions')
plt.xlabel('λ')
plt.ylabel('Function Value')
plt.legend()
plt.grid(True)

# 添加 x 轴和 y 轴
plt.axhline(y=0, color='k', linestyle='-', linewidth=0.5)
plt.axvline(x=0, color='k', linestyle='-', linewidth=0.5)

# 保存图表
plt.savefig('function_comparison.png', dpi=300, bbox_inches='tight')
plt.close()

print("图表已保存为 'function_comparison.png'")