Open xushilin1 opened 8 months ago
Here is my training script
deepspeed tinyllava/train/train.py \ --deepspeed ./scripts/zero2.json \ --model_name_or_path checkpoints/TinyLlama-1.1B-Chat-v1.0/ \ --version plain \ --data_path datasets/LLaVA-Pretrain/blip_laion_cc_sbu_558k.json \ --image_folder datasets/LLaVA-Pretrain/images \ --vision_tower checkpoints/clip-vit-large-patch14-336 \ --pretrain_mm_mlp_adapter output/pretrain/llava-tinyllama-1.1b/mm_projector.bin \ --mm_projector_type mlp2x_gelu \ --tune_entire_model True \ --tune_vit_from_layer 12 \ --mm_vision_select_layer -2 \ --mm_use_im_start_end False \ --mm_use_im_patch_token False \ --bf16 True \ --output_dir output/pretrain/llava-tinyllama-1.1b_share \ --num_train_epochs 1 \ --per_device_train_batch_size 32 \ --per_device_eval_batch_size 4 \ --gradient_accumulation_steps 1 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 24000 \ --save_total_limit 1 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --tf32 True \ --model_max_length 2048 \ --gradient_checkpointing True \ --dataloader_num_workers 4 \ --lazy_preprocess True
maybe you should try deepspeed with a lower version like 0.10?
Here is my training script