TommyWongww / reading-notes

recording my reading works
1 stars 0 forks source link

NLP-自然语言生成任务 #3

Open TommyWongww opened 5 years ago

TommyWongww commented 5 years ago
TommyWongww commented 5 years ago
  • [ ] 论文阅读情况
  • ICML 2019 MASS: Masked Sequence to Sequence Pre-training for Language Generation

https://arxiv.org/pdf/1905.02450.pdf

TommyWongww commented 5 years ago

论文阅读情况-ICML

BERT在自然语言理解(比如情感分类、自然语言推理、命名实体识别、SQuAD阅读理解等)任务中取得了很好的结果,受到了越来越多的关注。然而,在自然语言处理领域,除了自然语言理解任务,还有很多序列到序列的自然语言生成任务,比如机器翻译、文本摘要生成、对话生成、问答、文本风格转换等。在这类任务中,目前主流的方法是编码器-注意力-解码器框架,如下图所示。

icml-2019-mass-1

编码器(Encoder)将源序列文本X编码成隐藏向量序列,然后解码器(Decoder)通过注意力机制(Attention)抽取编码的隐藏向量序列信息,自回归地生成目标序列文本Y。

BERT通常只训练一个编码器用于自然语言理解,而GPT的语言模型通常是训练一个解码器。如果要将BERT或者GPT用于序列到序列的自然语言生成任务,通常只有分开预训练编码器和解码器,因此编码器-注意力-解码器结构没有被联合训练,记忆力机制也不会被预训练,而解码器对编码器的注意力机制在这类任务中非常重要,因此BERT和GPT在这类任务中只能达到次优效果。

新的预训练方法-MASS

专门针对序列到序列的自然语言生成任务,微软亚洲研究院提出了新的预训练方法:屏蔽序列到序列预训练(MASS: Masked Sequence to Sequence Pre-training)。MASS对句子随机屏蔽一个长度为k的连续片段,然后通过编码器-注意力-解码器模型预测生成该片段。

icml-2019-mass-2 屏蔽序列到序列预训练MASS模型框架

如上图所示,编码器端的第3-6个词被屏蔽掉,然后解码器端只预测这几个连续的词,而屏蔽掉其它词,图中“_”代表被屏蔽的词。

MASS预训练有以下几大优势:

统一的预训练框架

MASS有一个重要的超参数k(屏蔽的连续片段长度),通过调整k的大小,MASS能包含BERT中的屏蔽语言模型训练方法以及GPT中标准的语言模型预训练方法,使MASS成为一个通用的预训练框架。

当k=1时,根据MASS的设定,编码器端屏蔽一个单词,解码器端预测一个单词,如下图所示。解码器端没有任何输入信息,这时MASS和BERT中的屏蔽语言模型的预训练方法等价。

icml-2019-mass-3

当k=m(m为序列长度)时,根据MASS的设定,编码器屏蔽所有的单词,解码器预测所有单词,如下图所示,由于编码器端所有词都被屏蔽掉,解码器的注意力机制相当于没有获取到信息,在这种情况下MASS等价于GPT中的标准语言模型。 icml-2019-mass-4

MASS在不同K下的概率形式如下表所示,其中m为序列长度,u和v为屏蔽序列的开始和结束位置,x^u:v表示从位置u到v的序列片段,x^\u:v表示该序列从位置u到v被屏蔽掉。可以看到,当K=1或者m时,MASS的概率形式分别和BERT中的屏蔽语言模型以及GPT中的标准语言模型一致。

icml-2019-mass-5

我们通过实验分析了屏蔽MASS模型中不同的片段长度(k)进行预训练的效果,如下图所示。

icml-2019-mass-6

当k取大约句子长度一半时(50% m),下游任务能达到最优性能。屏蔽句子中一半的词可以很好地平衡编码器和解码器的预训练,过度偏向编码器(k=1,即BERT)或者过度偏向解码器(k=m,即LM/GPT)都不能在该任务中取得最优的效果,由此可以看出MASS在序列到序列的自然语言生成任务中的优势。