# TODO: Store output files into local storage (class storage)
def _handle_growth_criteria(self,
synth_productions: pd.DataFrame,
synth_attractions: pd.DataFrame,
base_year: str,
future_years: List[str],
) -> Tuple[pd.DataFrame, pd.DataFrame]:
# Init
all_years = [base_year] + future_years
# Load the exceptional zone definitions from production/attraction
# generation
print("Loading Exceptional Growth Datafiles")
exceptional_zones = eg.load_exceptional_zones(
productions_export=self.exports["productions"],
attractions_export=self.exports["attractions"]
)
# Reload aggregated population and employment data to calculate
# sector level trip rates
fname = consts.POP_FNAME % self.input_zone_system
grown_pop_path = os.path.join(self.exports["productions"], fname)
fname = consts.EMP_FNAME % self.input_zone_system
grown_emp_path = os.path.join(self.exports["attractions"], fname)
# For testing purposes - use the previously generated trip outputs -
# same as the synthetic base
obs_production_path = r"Y:\NorMITs Demand\norms_2015\v2_3-EFS_Output\iter1\Productions\norms_2015_productions.csv"
obs_attraction_path = r"Y:\NorMITs Demand\norms_2015\v2_3-EFS_Output\iter1\Attractions\norms_2015_attractions.csv"
# For testing purposes - use the converted productions/attractions
# from a previous run (same as observed placeholders)
# converted_productions = pd.read_csv(obs_production_path)
# converted_pure_attractions = pd.read_csv(obs_attraction_path)
# Detect the segment columns for PAs and Pop/Emp
p_segs = du.list_safe_remove(list(synth_productions), all_years)
a_segs = du.list_safe_remove(list(synth_attractions), all_years)
growth_criteria_segments = {
"pop": [seg for seg in p_segs if seg != "purpose_id"],
"emp": [seg for seg in a_segs if seg != "purpose_id"] + ["employment_cat"],
"prod": p_segs,
"attr": a_segs
}
# ## APPLY GROWTH CRITERIA ## #
# Placeholder sector file definition
# TODO Integrate into EFS inputs
model_zone_to_sector_path = r"Y:\NorMITs Demand\import\zone_translation\norms_2015_to_tfn_sectors.csv"
from_zone_column = "norms_zone_id"
to_sector_column = "tfn_sectors_zone_id"
soc_weights_path = self.attraction_generator.imports["soc_weights"]
# Load sector mapping for calculating the exceptional zone trip rates
sector_lookup = pd.read_csv(model_zone_to_sector_path).rename(
columns={
from_zone_column: "model_zone_id",
to_sector_column: "grouping_id"
})
sector_lookup = sector_lookup.set_index("model_zone_id")["grouping_id"]
# Zone translation arguments for population/employment and
# exceptional zone translation - reduces number of arguments required
pop_translation, emp_translation = self.get_translation_dfs()
# TODO: Update growth_criteria() to use different translation for pop
# /emp data
zone_translator_args = {
"translation_dataframe": pop_translation,
"start_zoning_system_name": self.input_zone_system,
"end_zoning_system_name": self.output_zone_system,
}
# MSOA path to translate population and employment zones
msoa_lookup_path = os.path.join(
self.imports["default_inputs"],
self.msoa_lookup_path
)
# TODO: How to deal with NHB productions/attractions??
# Run this after the P/A models, then base the NHB off this?
# Apply growth criteria to "normal" and "exceptional" zones
productions, attractions = eg.growth_criteria(
synth_productions=synth_productions,
synth_attractions=synth_attractions,
observed_prod_path=obs_production_path,
observed_attr_path=obs_attraction_path,
population_path=grown_pop_path,
employment_path=grown_emp_path,
msoa_lookup_path=msoa_lookup_path,
segments=growth_criteria_segments,
future_years=future_years,
base_year=base_year,
zone_translator=self.zone_translator,
zone_translator_args=zone_translator_args,
exceptional_zones=exceptional_zones,
trip_rate_sectors=sector_lookup,
soc_weights_path=soc_weights_path
)
return productions, attractions
def get_translation_dfs(self) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""
Returns the dataframes for translating from input_zone_system to
output_zone_system.
A different translation dataframe is returned for translating
population data and employment data.
Returns
-------
pop_translation:
A population weighted translation dataframe to convert from
input_zone_system to output_zone_system
emp_translation:
A employment weighted translation dataframe to convert from
input_zone_system to output_zone_system
"""
# Init
fname_args = (self.input_zone_system, self.output_zone_system)
# Read in pop translation
fname = consts.POP_TRANSLATION_FNAME % fname_args
path = os.path.join(self.imports['zoning'], fname)
pop_translation = pd.read_csv(path)
# Read in emp translation
fname = consts.EMP_TRANSLATION_FNAME % fname_args
path = os.path.join(self.imports['zoning'], fname)
emp_translation = pd.read_csv(path)
return pop_translation, emp_translation
def pa_to_od(self,
years_needed: List[int] = consts.ALL_YEARS,
modes_needed: List[int] = consts.MODES_NEEDED,
Integrate into EFS inputs
https://github.com/Transport-for-the-North/NorMITs-Demand/blob/b8df2cc936ecd6a3f746a695e21c7caa580ceeb7/external_forecast_system.py#L1133
c49b55eb78a0db51d8d9f9987502f32ebee13948