This is a TensorFlow implementation of the Adversarially Regularized Graph Autoencoder(ARGA) model as described in our paper: Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., & Zhang, C. (2018). Adversarially Regularized Graph Autoencoder for Graph Embedding, [https://www.ijcai.org/proceedings/2018/0362.pdf].
Traceback (most recent call last): File "ARGA/arga/run.py", line 18, in
runner.erun()
File "ARGA/arga/link_prediction.py", line 24, in erun
feas = format_data(self.data_name)
File "ARGA/arga/constructor.py", line 42, in format_data
adj, features, y_test, tx, ty, test_maks, true_labels = load_data(data_name)
File "ARGA/arga/input_data.py", line 24, in load_data
objects.append(pkl.load(open("data/ind.{}.{}".format(dataset, names[i]))))
File ".pyenv/versions/3.5.1/lib/python3.5/codecs.py", line 321, in decode
(result, consumed) = self._buffer_decode(data, self.errors, final)
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 0: invalid start byte