Evaluate global model
Traceback (most recent call last):
File "F:\PFLlib\system\main.py", line 548, in
run(args)
File "F:\PFLlib\system\main.py", line 376, in run
server.train()
File "F:\PFLlib\system\flcore\servers\serveravg.py", line 48, in train
self.evaluate()
File "F:\PFLlib\system\flcore\servers\serverbase.py", line 245, in evaluate
stats = self.test_metrics()
^^^^^^^^^^^^^^^^^^^
File "F:\PFLlib\system\flcore\servers\serverbase.py", line 219, in test_metrics
ct, ns, auc = c.test_metrics()
^^^^^^^^^^^^^^^^
File "F:\PFLlib\system\flcore\clients\clientbase.py", line 114, in test_metrics
output = self.model(x)
^^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl
return forward_call(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\PFLlib\system\flcore\trainmodel\models.py", line 34, in forward
out = self.base(x)
^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\PFLlib\system\flcore\trainmodel\models.py", line 439, in forward
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, batch_first=True, enforce_sorted=False)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\utils\rnn.py", line 264, in pack_padded_sequence
_VF._pack_padded_sequence(input, lengths, batch_first)
RuntimeError: 'lengths' argument should be a 1D CPU int64 tensor, but got 0D cpu Long tensor
It seems that different errors occur with all algorithms when running the Shakespeare NLP task in FedAvg.
My parameters: python main.py -data Shakespeare -m lstm -algo FedAvg -gr 2000 -did 0 -ls 5 -jr 0.1 -vs 80
Evaluate global model Traceback (most recent call last): File "F:\PFLlib\system\main.py", line 548, in
run(args)
File "F:\PFLlib\system\main.py", line 376, in run
server.train()
File "F:\PFLlib\system\flcore\servers\serveravg.py", line 48, in train
self.evaluate()
File "F:\PFLlib\system\flcore\servers\serverbase.py", line 245, in evaluate
stats = self.test_metrics()
^^^^^^^^^^^^^^^^^^^
File "F:\PFLlib\system\flcore\servers\serverbase.py", line 219, in test_metrics
ct, ns, auc = c.test_metrics()
^^^^^^^^^^^^^^^^
File "F:\PFLlib\system\flcore\clients\clientbase.py", line 114, in test_metrics
output = self.model(x)
^^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl
return forward_call(*args, *kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\PFLlib\system\flcore\trainmodel\models.py", line 34, in forward
out = self.base(x)
^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\PFLlib\system\flcore\trainmodel\models.py", line 439, in forward
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, batch_first=True, enforce_sorted=False)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Heisenberg.conda\envs\fl\Lib\site-packages\torch\nn\utils\rnn.py", line 264, in pack_padded_sequence
_VF._pack_padded_sequence(input, lengths, batch_first)
RuntimeError: 'lengths' argument should be a 1D CPU int64 tensor, but got 0D cpu Long tensor