Open lidonghui-ai opened 12 months ago
Hi, this might've been an issue with serial chains before, but on 52881009a13c98e737e5a6ef7e3d97f35391b00e I'm getting that they produce the same results.
tensor([[[ 0.0000e+00, -5.9605e-08, -1.0000e+00, 5.1096e-01],
[ 1.0000e+00, 0.0000e+00, 0.0000e+00, 1.9145e-01],
[ 0.0000e+00, -1.0000e+00, 5.9605e-08, 6.0011e-01],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00]]])
[[-6.44330720e-18 3.58979314e-09 -1.00000000e+00 5.10955359e-01]
[ 1.00000000e+00 1.79489651e-09 0.00000000e+00 1.91450000e-01]
[ 1.79489651e-09 -1.00000000e+00 -3.58979312e-09 6.00114361e-01]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]
Which when tested for similarity is true:
assert torch.allclose(ik_ret, ret.get_matrix(), atol=1e-6)
The FK for UR5 using pytorch_kinematics seems to be wrong. I use both pytorch_kinematics and ikpy to solve the FK of UR5, but the results are not same. Using the ikpy can get the right result but using pytorch_kinematics get the wrong answer. Hope you can help me! Thanks!
ur5.zip