Closed woody-panda closed 2 years ago
Please refer to the github repo for RetinaFace (https://github.com/biubug6/Pytorch_Retinaface) for more details. We modify the script of detect.py for extracting facial images from videos and the code is displayed below.
import os
from os.path import join
import argparse
import numpy as np
import cv2
import torch
from tqdm import tqdm
from data import cfg_mnet, cfg_re50
from layers.functions.prior_box import PriorBox
from utils.nms.py_cpu_nms import py_cpu_nms
from models.retinaface import RetinaFace
from utils.box_utils import decode
np.random.seed(0)
def check_keys(model, pretrained_state_dict):
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = ckpt_keys - model_keys
missing_keys = model_keys - ckpt_keys
print('Missing keys:{}'.format(len(missing_keys)))
print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
print('Used keys:{}'.format(len(used_pretrained_keys)))
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
return True
def remove_prefix(state_dict, prefix):
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
print('remove prefix \'{}\''.format(prefix))
def f(x): return x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
def load_model(model, pretrained_path, load_to_cpu):
print('Loading pretrained model from {}'.format(pretrained_path))
if load_to_cpu:
pretrained_dict = torch.load(
pretrained_path, map_location=lambda storage, loc: storage)
else:
pretrained_dict = torch.load(
pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(
pretrained_dict['state_dict'], 'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
check_keys(model, pretrained_dict)
model.load_state_dict(pretrained_dict, strict=False)
model.to(device)
return model
def detect(img_list, output_path, resize=1):
os.makedirs(output_path, exist_ok=True)
im_height, im_width, _ = img_list[0].shape
scale = torch.Tensor([im_width, im_height, im_width, im_height])
img_x = torch.stack(img_list, dim=0).permute([0, 3, 1, 2])
scale = scale.to(device)
# batch size
batch_size = args.bs
# forward times
f_times = img_x.shape[0] // batch_size
if img_x.shape[0] % batch_size != 0:
f_times += 1
locs_list = list()
confs_list = list()
for _ in range(f_times):
if _ != f_times - 1:
batch_img_x = img_x[_ * batch_size:(_ + 1) * batch_size]
else:
batch_img_x = img_x[_ * batch_size:] # last batch
batch_img_x = batch_img_x.to(device).float()
l, c, _ = net(batch_img_x)
locs_list.append(l)
confs_list.append(c)
locs = torch.cat(locs_list, dim=0)
confs = torch.cat(confs_list, dim=0)
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
img_cpu = img_x.permute([0, 2, 3, 1]).cpu().numpy()
i = 0
for img, loc, conf in zip(img_cpu, locs, confs):
boxes = decode(loc.data, prior_data, cfg['variance'])
boxes = boxes * scale / resize
boxes = boxes.cpu().numpy()
scores = conf.data.cpu().numpy()[:, 1]
# ignore low scores
inds = np.where(scores > args.confidence_threshold)[0]
boxes = boxes[inds]
scores = scores[inds]
# keep top-K before NMS
order = scores.argsort()[::-1][:args.top_k]
boxes = boxes[order]
scores = scores[order]
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(
np.float32, copy=False)
keep = py_cpu_nms(dets, args.nms_threshold)
# keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
dets = dets[keep, :]
# keep top-K faster NMS
dets = dets[:args.keep_top_k, :]
if len(dets) == 0:
continue
det = list(map(int, dets[0]))
x, y, size_bb_x, size_bb_y = get_boundingbox(det, img.shape[1], img.shape[0])
cropped_img = img[y:y + size_bb_y, x:x + size_bb_x, :] + (104, 117, 123)
cv2.imwrite(join(output_path, '{:04d}.png'.format(i)), cropped_img)
i += 1
pass
def extract_frames(data_path, interval=1):
"""Method to extract frames"""
reader = cv2.VideoCapture(data_path)
frame_num = 0
frames = list()
while reader.isOpened():
success, image = reader.read()
if not success:
break
cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = torch.tensor(image) - torch.tensor([104, 117, 123])
if frame_num % interval == 0:
frames.append(image)
frame_num += 1
reader.release()
if len(frames) > args.max_frames:
samples = np.random.choice(
np.arange(0, len(frames)), size=args.max_frames, replace=False)
return [frames[_] for _ in samples]
return frames
def get_boundingbox(bbox, width, height, scale=1.3, minsize=None):
x1 = bbox[0]
y1 = bbox[1]
x2 = bbox[2]
y2 = bbox[3]
size_bb_x = int((x2 - x1) * scale)
size_bb_y = int((y2 - y1) * scale)
if minsize:
if size_bb_x < minsize:
size_bb_x = minsize
if size_bb_y < minsize:
size_bb_y = minsize
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
# Check for out of bounds, x-y top left corner
x1 = max(int(center_x - size_bb_x // 2), 0)
y1 = max(int(center_y - size_bb_y // 2), 0)
# Check for too big bb size for given x, y
size_bb_x = min(width - x1, size_bb_x)
size_bb_y = min(height - y1, size_bb_y)
return x1, y1, size_bb_x, size_bb_y
def extract_method_videos(data_path, interval):
videos_path = join(data_path, 'videos')
images_path = join(data_path, 'images')
num_unqualified = 0
for video in tqdm(os.listdir(videos_path)):
image_folder = video.split('.')[0]
if video.split('.')[1] != 'mp4':
continue
try:
image_list = extract_frames(join(videos_path, video), interval)
detect(image_list, join(images_path, image_folder))
except Exception as ex:
f = open("failure.txt", "a", encoding="utf-8")
f.writelines(image_folder +
f" Exception for {image_folder}: {ex}\n")
f.close()
num_unqualified += 1
print("Total unqualified: ", num_unqualified)
if __name__ == '__main__':
p = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
p.add_argument('--data_path', '-p', type=str, help='path to the data')
p.add_argument('--confidence_threshold', default=0.05,
type=float, help='confidence threshold')
p.add_argument('--top_k', default=5, type=int, help='top_k')
p.add_argument('--nms_threshold', default=0.4,
type=float, help='nms threshold')
p.add_argument('--keep_top_k', default=1, type=int, help='keep_top_k')
p.add_argument('--bs', default=32, type=int, help='batch size')
p.add_argument('--frame_interval', '-fi', default=1, type=int, help='frame interval')
p.add_argument('--device', "-d", default="cuda:0", type=str, help='device')
p.add_argument('--max_frames', default=100, type=int, help='maximum frames per video')
args = p.parse_args()
torch.set_grad_enabled(False)
# use resnet-50
cfg = cfg_re50
pretrained_weights = './weights/Resnet50_Final.pth'
torch.backends.cudnn.benchmark = True
device = torch.device(args.device)
print(device)
# net and model
net = RetinaFace(cfg=cfg, phase='test')
net = load_model(net, pretrained_weights, args.device)
net.eval()
print('Finished loading model!')
extract_method_videos(args.data_path, args.frame_interval)
Thanks!
Thanks for sharing the code. could you share the code for data preprocessing further? For example, use RetinaFace to extract faces from videos.