VISION-SJTU / RECCE

[CVPR2022] End-to-End Reconstruction-Classification Learning for Face Forgery Detection
MIT License
116 stars 16 forks source link

code for data preprocessing #1

Closed woody-panda closed 2 years ago

woody-panda commented 2 years ago

Thanks for sharing the code. could you share the code for data preprocessing further? For example, use RetinaFace to extract faces from videos.

XJay18 commented 2 years ago

Please refer to the github repo for RetinaFace (https://github.com/biubug6/Pytorch_Retinaface) for more details. We modify the script of detect.py for extracting facial images from videos and the code is displayed below.

import os
from os.path import join
import argparse
import numpy as np
import cv2
import torch
from tqdm import tqdm

from data import cfg_mnet, cfg_re50
from layers.functions.prior_box import PriorBox
from utils.nms.py_cpu_nms import py_cpu_nms
from models.retinaface import RetinaFace
from utils.box_utils import decode

np.random.seed(0)

def check_keys(model, pretrained_state_dict):
    ckpt_keys = set(pretrained_state_dict.keys())
    model_keys = set(model.state_dict().keys())
    used_pretrained_keys = model_keys & ckpt_keys
    unused_pretrained_keys = ckpt_keys - model_keys
    missing_keys = model_keys - ckpt_keys
    print('Missing keys:{}'.format(len(missing_keys)))
    print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
    print('Used keys:{}'.format(len(used_pretrained_keys)))
    assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
    return True

def remove_prefix(state_dict, prefix):
    ''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
    print('remove prefix \'{}\''.format(prefix))

    def f(x): return x.split(prefix, 1)[-1] if x.startswith(prefix) else x

    return {f(key): value for key, value in state_dict.items()}

def load_model(model, pretrained_path, load_to_cpu):
    print('Loading pretrained model from {}'.format(pretrained_path))
    if load_to_cpu:
        pretrained_dict = torch.load(
            pretrained_path, map_location=lambda storage, loc: storage)
    else:
        pretrained_dict = torch.load(
            pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
    if "state_dict" in pretrained_dict.keys():
        pretrained_dict = remove_prefix(
            pretrained_dict['state_dict'], 'module.')
    else:
        pretrained_dict = remove_prefix(pretrained_dict, 'module.')
    check_keys(model, pretrained_dict)
    model.load_state_dict(pretrained_dict, strict=False)
    model.to(device)
    return model

def detect(img_list, output_path, resize=1):
    os.makedirs(output_path, exist_ok=True)
    im_height, im_width, _ = img_list[0].shape
    scale = torch.Tensor([im_width, im_height, im_width, im_height])
    img_x = torch.stack(img_list, dim=0).permute([0, 3, 1, 2])
    scale = scale.to(device)

    # batch size
    batch_size = args.bs
    # forward times
    f_times = img_x.shape[0] // batch_size
    if img_x.shape[0] % batch_size != 0:
        f_times += 1
    locs_list = list()
    confs_list = list()
    for _ in range(f_times):
        if _ != f_times - 1:
            batch_img_x = img_x[_ * batch_size:(_ + 1) * batch_size]
        else:
            batch_img_x = img_x[_ * batch_size:]  # last batch
        batch_img_x = batch_img_x.to(device).float()
        l, c, _ = net(batch_img_x)
        locs_list.append(l)
        confs_list.append(c)
    locs = torch.cat(locs_list, dim=0)
    confs = torch.cat(confs_list, dim=0)

    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data

    img_cpu = img_x.permute([0, 2, 3, 1]).cpu().numpy()
    i = 0
    for img, loc, conf in zip(img_cpu, locs, confs):
        boxes = decode(loc.data, prior_data, cfg['variance'])
        boxes = boxes * scale / resize
        boxes = boxes.cpu().numpy()
        scores = conf.data.cpu().numpy()[:, 1]

        # ignore low scores
        inds = np.where(scores > args.confidence_threshold)[0]
        boxes = boxes[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1][:args.top_k]
        boxes = boxes[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(
            np.float32, copy=False)
        keep = py_cpu_nms(dets, args.nms_threshold)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]

        # keep top-K faster NMS
        dets = dets[:args.keep_top_k, :]

        if len(dets) == 0:
            continue
        det = list(map(int, dets[0]))
        x, y, size_bb_x, size_bb_y = get_boundingbox(det, img.shape[1], img.shape[0])
        cropped_img = img[y:y + size_bb_y, x:x + size_bb_x, :] + (104, 117, 123)
        cv2.imwrite(join(output_path, '{:04d}.png'.format(i)), cropped_img)
        i += 1
    pass

def extract_frames(data_path, interval=1):
    """Method to extract frames"""
    reader = cv2.VideoCapture(data_path)
    frame_num = 0
    frames = list()
    while reader.isOpened():
        success, image = reader.read()
        if not success:
            break
        cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = torch.tensor(image) - torch.tensor([104, 117, 123])
        if frame_num % interval == 0:
            frames.append(image)
        frame_num += 1
    reader.release()
    if len(frames) > args.max_frames:
        samples = np.random.choice(
            np.arange(0, len(frames)), size=args.max_frames, replace=False)
        return [frames[_] for _ in samples]
    return frames

def get_boundingbox(bbox, width, height, scale=1.3, minsize=None):
    x1 = bbox[0]
    y1 = bbox[1]
    x2 = bbox[2]
    y2 = bbox[3]
    size_bb_x = int((x2 - x1) * scale)
    size_bb_y = int((y2 - y1) * scale)
    if minsize:
        if size_bb_x < minsize:
            size_bb_x = minsize
        if size_bb_y < minsize:
            size_bb_y = minsize
    center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2

    # Check for out of bounds, x-y top left corner
    x1 = max(int(center_x - size_bb_x // 2), 0)
    y1 = max(int(center_y - size_bb_y // 2), 0)
    # Check for too big bb size for given x, y
    size_bb_x = min(width - x1, size_bb_x)
    size_bb_y = min(height - y1, size_bb_y)
    return x1, y1, size_bb_x, size_bb_y

def extract_method_videos(data_path, interval):
    videos_path = join(data_path, 'videos')
    images_path = join(data_path, 'images')

    num_unqualified = 0
    for video in tqdm(os.listdir(videos_path)):
        image_folder = video.split('.')[0]
        if video.split('.')[1] != 'mp4':
            continue
        try:
            image_list = extract_frames(join(videos_path, video), interval)
            detect(image_list, join(images_path, image_folder))
        except Exception as ex:
            f = open("failure.txt", "a", encoding="utf-8")
            f.writelines(image_folder +
                         f"  Exception for {image_folder}: {ex}\n")
            f.close()
            num_unqualified += 1
    print("Total unqualified: ", num_unqualified)

if __name__ == '__main__':
    p = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    p.add_argument('--data_path', '-p', type=str, help='path to the data')
    p.add_argument('--confidence_threshold', default=0.05,
                   type=float, help='confidence threshold')
    p.add_argument('--top_k', default=5, type=int, help='top_k')
    p.add_argument('--nms_threshold', default=0.4,
                   type=float, help='nms threshold')
    p.add_argument('--keep_top_k', default=1, type=int, help='keep_top_k')
    p.add_argument('--bs', default=32, type=int, help='batch size')
    p.add_argument('--frame_interval', '-fi', default=1, type=int, help='frame interval')
    p.add_argument('--device', "-d", default="cuda:0", type=str, help='device')
    p.add_argument('--max_frames', default=100, type=int, help='maximum frames per video')

    args = p.parse_args()

    torch.set_grad_enabled(False)
    # use resnet-50
    cfg = cfg_re50
    pretrained_weights = './weights/Resnet50_Final.pth'

    torch.backends.cudnn.benchmark = True
    device = torch.device(args.device)
    print(device)

    # net and model
    net = RetinaFace(cfg=cfg, phase='test')
    net = load_model(net, pretrained_weights, args.device)
    net.eval()
    print('Finished loading model!')

    extract_method_videos(args.data_path, args.frame_interval)
woody-panda commented 2 years ago

Thanks!