VITA-Group / AutoSpeech

[InterSpeech 2020] "AutoSpeech: Neural Architecture Search for Speaker Recognition" by Shaojin Ding*, Tianlong Chen*, Xinyu Gong, Weiwei Zha, Zhangyang Wang
https://arxiv.org/abs/2005.03215
MIT License
208 stars 42 forks source link

Reducing the batch size leads to overfitting? #47

Open Sreeni1204 opened 2 years ago

Sreeni1204 commented 2 years ago

Hello,

With batch size of 256, training the ResNet18 model, I go the CUDA out of memory error, so I had to reduce the batch size to 128. With batch size 128, below are the logs:

Epoch: [49][ 200/1080] Time 2.723 ( 2.664) Data 2.575 ( 2.515) Loss 1.3415e+00 (1.3413e+00) Acc@1 100.00 ( 99.33) Acc@5 100.00 ( 99.96) Epoch: [49][ 400/1080] Time 3.064 ( 2.778) Data 2.915 ( 2.630) Loss 1.3431e+00 (1.3420e+00) Acc@1 99.22 ( 99.31) Acc@5 100.00 ( 99.96) Epoch: [49][ 600/1080] Time 2.882 ( 2.845) Data 2.729 ( 2.696) Loss 1.3618e+00 (1.3444e+00) Acc@1 100.00 ( 99.27) Acc@5 100.00 ( 99.95)

I am not sure if the model is overfitting, could you please provide clarification on reading this output logs?

I am using the VoxCeleb1 data from 2022 challenge.